%, GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN (AUTONOMOUS)
| (Affiliated to Andhra University, Visakhapatnam) I B.Tech. - II Semester Regular Examinations,
June/July - 2025

PYTHON PROGRAMMING KEY

1 a. Explain features of Python which make it a more sought-after language and discuss
the different application areas where Python is widely used.

Python is a highly sought-after programming language due to a combination of features that
make it accessible, powerful, and versatile across a wide range of application areas.

Key Features That Make Python Popular:

* Readable and Simple Syntax: Python’s syntax is clear and close to natural
language, making it easy for beginners and experts alike to read, write, and
maintain code. This reduces the learning curve and accelerates development.

* Versatility: Python supports multiple programming paradigms, including
object-oriented, procedural, and functional programming, allowing developers
to choose the best approach for their projects.

* Dynamically Typed and Interpreted: Variables do not need explicit
declaration, and code is executed line by line, which simplifies debugging and
speeds up the development cycle.

* Extensive Standard Library and Ecosystem: Python offers a vast collection
of libraries and frameworks for tasks ranging from web development (Django,
Flask) to scientific computing (NumPy, Pandas), machine learning
(TensorFlow, scikit-learn), and more.

* Cross-Platform Compatibility: Python runs seamlessly on major operating
systems like Windows, macOS, and Linux, ensuring portability of code

* Open Source and Community Support: Python is free to use and benefits
from a robust, active community that contributes to its continuous
improvement and offers extensive support resources.

* GUI and Web Development Support: Libraries like Tkinter, PyQt, and
frameworks such as Django and Flask enable the development of desktop and
web applications.

Popular Application Areas:
1. Web Development — Django, Flask
2. Data Science & Analytics — Pandas, NumPy, Matplotlib
3. Machine Learning & AI — TensorF low, PyTorch
4. Game Development — Pygame
5

. Cybersecurity — Scripting, scanning, penetration testing

6. DevOps/Cloud — Automation, deployments
7. IoT — Raspberry Pi, MicroPython

1 b. What are keywords in Python? List any seven Python keywords and briefly explain
the purpose of each.

Keywords in Python are special reserved words that have predefined meanings and purposes
in the language. They are fundamental to Python’s syntax and structure, and cannot be used
as identifiers (such as variable, function, or class names)

Keyword | Purpose

if Used for conditional branching; executes a block of code if a specified condition is true.
for Used to create loops that iterate over a sequence (like a list, tuple, or string).

def Used to define a function.

class Used to define a class, enabling object-oriented programming.

return Exits a function and optionally passes back a value to the caller.

import Used to include external modules and libraries into the current script.

break Terminates the nearest enclosing loop prematurely.

2 a. Write in detail about the data types in Python?

The variables can hold values of different type called Data type. Data type is a set of values
and allowable operations on those values.

Python has a great set of useful data types. Python's data types are built in the core of the
language. They are easy to use and straightforward.

In Python, data types define the kind of value a variable can hold. Python has a rich set of

built-in data types.

Numeric i Dictionary Boolean Set Sequence Typa

I I |
Float String Tuple

Integer

Complex Number List

1. Numeric Types
int: Whole numbers — x = 10
float: Decimal numbers — y = 3.14
complex: Complex numbers — z =2 + 3j
2. Boolean Type
bool: Logical values — True or False
3. Set Types
set: Unordered, unique items — {1, 2, 3}
4. Sequence Types
list: An ordered, mutable collection of items (can be of mixed types).
Example: [1, "apple", 3.5]
tuple: An ordered, immutable collection of items.
Example: (1, "banana", 4.2)
5. Mapping Type
dict: Stores key-value pairs. Keys must be unique and immutable.
Example: {"name": "Alice", "age": 30}

6. String: Represents a sequence of Unicode characters. Strings are immutable and used to
store textual data.

Example: "Hello, World!"

2 b. Explain the usage of the input() function and the print() function with examples and
also discuss how to handle different data types when taking input.

1. input() Function

The input() function is used to take user input from the keyboard.
Syntax:

variable = input("Enter something: ")

Example:

name = input("Enter your name: ")

2. print() Function

The print() function is used to display output to the console.
Syntax:

print(valuel, value2, ..., sep="", end="\n")

Example:
print("Python", "is", "user friendly language", sep="-", end="1!!\n")

Handling Different Data Types with input()

Expected Typé' Conversion Required|[Example

Integer int(input()) num = int(input("Enter number: "))
Float float(input()) price = float(input("Enter price: "))
Boolean Custom logic val = input("Yes or No: ") == "Yes"
List (basic) input().split() items = input("Enter items: ").split()

3 a. Describe four different types of operators and provide examples of expressions
using each type

In Python, operators are special symbols that perform operations on variables and values.
Operators are used to manipulate the value of operands.

Arithmetic Operators:

Arithmetic operators in Python are used to perform mathematical operations such as addition,

subtraction, multiplication, and more.

1. Arithmetic Operators

Used to perform mathematical operations.

Operator Description Example Result
+ Addition 5+3 8
- Subtraction 10-4 6
= Multiplication 6*7 42
/ Division 8/2 4.0
// ._Floor_Dlvml‘ 9// 2 N 4_ s
LT' Modulus 10 % 3 il
J** Ex_ponent iation T’*S‘
a=10
b=3

print("Addition:", a + b)

print("Subtraction:", a - b)

print("Multiplication:", a * b)

print("Division:", a / b)

print("Floor Division:", a // b)

print("Modulus:", a % b)

print("Exponentiation:", a ** b)

2. Relational (Comparison) Operators

Used to compare two values.

Operator Description Example Result
= Equal to 5=35 True
I= Not equal to 41=5 True
> Greater than 7>3 True
< Less than 2<6 True
>= Greater or equal to 7>=17 True
<= Less or equal to 4<=9 True
a=10
b=5
print("a="b:",a==b)
print("a !I=b:", a I=b)
print("a>b:", a>b)
print("a <b:", a <b)
print("a >=b:", a>=b)
print("a <=b:", a <=b)
3. Logical Operators
Used to combine conditional statements.
Operator Description Example Result
and Logical AND True and False False
or Logical OR True or False True

Operator Description Example Result
not Logical NOT not True False
x=10

print(x > 5 and x <20) # True

4. Assignment Operators

Used to assign values to variables.

Operator Description Example Equivalent To

= Assign x=5 x=5

+= Add and assign x+=3 X=x+3
-= Subtract and assign X-=2 X=X-2
= Multiply and assign x=4 x=x*4
/= Divide and assign x/=2 X=x/2
/)= Floor diYide and X //=2 Xx=x//2

assign
%= Modulus and assign X%=3 X=X%3
x= Power and assign X ¥=2 X=X *¥*2

at+=5 #a=a+5
print("After +=:", a)
a-=3 #a=a-3
print("After -=:", a)
a*=2 #a=a*2
print("After *= :", a)
a/=4 #a=a/4
print("After /=:", a)
all=2 #a=a//2
print("After //=:", a)
a%=2 #a=a%2
print("After %=:", a)

a**=3 #a:a**3

print("After ¥*=:", a)

5. Membership Operators

Used to test if a value is in a sequence.

Operator Description Example Result
in Value is present 'a’ in 'apple’ True
not in Value is not present | 'x' not in 'apple’ True

my_list=[1, 2, 3, 4, 5]

print(3 in my_list) # Output: True
print(10 in my_list) # Output: False
print(6 not in my_list) # Output: True

6. Identity Operators
Used to compare object identities.
Operator Description Example Result
is Same identity Xisy True/False
is not Not same identity X isnoty True/False
a=[1,2]
b=a

print(aisb) # True

printa==b) # True (values are equal)

3 b. What is the order of evaluation in Python expressions? Explain how parentheses
can be used to alter the default order of evaluation.

In Python, expressions are evaluated based on operator precedence and associativity. Operators
with higher precedence are evaluated before those with lower precedence. If operators have the
same precedence, their associativity (left-to-right or right-to-left) determines the order.

Python Operator Precedence Table

Preﬁzs:]nce Operator(s) Description Associativity|| Example || Evaluation Result
Parentheses —
. — + * * =
1 (Highest) 0 overrides all 2+3)*4 5%4=20
) 2 k% 3 * %
2 o Exponentiation |[Right to Left 5 2 %% (3 **2)=512
Unary plus, minus, |,,. ,
=X, ~ 5+ -
3 +X, -X, ~X bitwise NOT Right to Left 5+3 2
4 s 10,9 | Multiplication, b pieht] 10+6/2] 10+3=13.0
division, etc.
5 +, - Addition, subtraction||Left to Right| 10 -3 + 1 8
6 <<, >> Bitise D Left to Right|| 4 <<1 8
operators
7 & Bitwise AND Leftto Right|| 5& 3 1
8 & Bitwise XOR Left to Right|| 573 6
o Left to .
9 Bitwise OR Right 5
=, =, >, Comparison . .|l 5>3and
10 e SR Left to Right 2 <4 True
11 not Logical NOT Right to Left| not True False
.] True and
12 and Logical AND Left to Right False
False
13 or Logical OR Left to Right e True
True
14 if else Cond1t19nal Right to Left x if cond Depen-d.s on
expressions elsey condition
o Assignment . _ _
15 (Lowest) || =, +=, == etc. Right to Left|| x=5+3 x=38
operators

4 a. Write a Python program that takes a list of numbers as input. Check whether each
number is even or odd and print the result.

input_string = input("Enter numbers separated by commas: ")
numbers = [int(num.strip()) for num in input_string.split(",")]

results =[]

for number in numbers:
if number % 2 == 0:
results.append(f" {number} is Even")
else:
results.append(f" {number} is Odd")
print("\nResults:")
for result in results:
print(result)

4 b. Explain the purpose and usage of the break, continue and pass statements in
Python. Provide separate code examples for each.
break Statement
Purpose: Used to exit a loop immediately, even if the loop condition is still True.
Example
for i in range(l1, 11):

ifi=—6:

break

print(i)

continue Statement

Purpose: Used to skip the rest of the code in the current iteration and move to the next
iteration of the loop.

Example
for i in range(1, 6):
ifi%2==0:
continue
print(i)
pass Statement

Purpose: Used as a placeholder when a statement is syntactically required but you don’t want
to write any code yet. Prevents the program from throwing an error when the block is empty.

Example
for i in range(5):
ifi=3:
pass
print(i)

Sa. Describe how to create strings and access individual characters using positive and
negative indexing. Provide code to check for string palindrome

Creating Strings:

In Python, strings can be created by enclosing characters in single ("), double ("), or triple
quotes (lll or """).

Examples of string creation

strl = 'Hello'

str2 = "Python"

str3 = ""Multi-line String™

Accessing Characters in a String

Python strings are indexed — you can access individual characters using:
Positive indexing (from left to right, starting at 0)
Negative indexing (from right to left, starting at -1)
Example

text = "Python"

print(text[0])

print(text[2])

print(text[-1])

print(text[-3])

Python Code to Check Palindrome:

word = input("Enter a string: ")
word = word.lower()
if word = word[::-1]:
print(f" {word}' is a palindrome.")
else:
print(f"'{word}' is not a palindrome.")

5 b. Write a Python program that:

Creates a dictionary to store the prices of three different fruits (e.g., "apple: 0.50,
""banana"': 0.25, ""orange" 0.75)

Accesses and prints the price of one of the fruits using its key

Adds a new fruit and its price to the dictionary

Updates the price of an existing fruit in the dictionary.

Iterates through the modified dictionary and prints each fruit and its updated price.

fruit_prices = {

"apple": 0.50,
"banana": 0.25,
"orange": 0.75

}
print("Price of apple:", fruit_prices["apple"])

fruit_prices["mango"] = 1.00

fruit_prices["banana"] = 0.30

print("\nUpdated Fruit Prices:")

for fruit, price in fruit_prices.items():
print(f" {fruit.capitalize()}: ${price:.2f}")

6 a. Explam the purpone and syntax of list comprehensions in Python. Write a program
to generate a list of squares of numbers from 1 to 10 using list comprehension.

Purpose of List Comprehensions in Python

List Comprehension provides a concise, readable, and efficient way to create lists in Python.
It allows you to generate a new list by applying an operation to each item in an existing
iterable (like a list or range), all in a single line of code.

Syntax of List Comprehension:

new_list = [expression for item in iterable if condition]
Python Program: Generate Squares from 1 to 10
squares = [x**2 for x in range(1, 11)]

print("List of squares from 1 to 10:", squares)

6 b. How can slicing he used to extract a portion of a tuple? Provide examples of slicing
with positive and negative indices, as well as specifying a Step.

Slicing a Tuple in Python

Slicing allows you to extract a portion (subtuple) from a tuple using the [start:stop:step]
syntax, just like with lists and strings.

General Slicing Syntax:

tuple[start : stop : step]

Example

my_tuple = (10, 20, 30, 40, 50, 60, 70)
Slicing with Positive Indices:
print(my_tuple[1:4])

Slicing with Negative Indices:
print(my_tuple[-5:-2])

Slicing with a Step:
print(my_tuple[0:7:2])

7 a. Explain the different types of function arguments in Python with examples.
Types of Function Arguments in Python

In Python, functions can accept different types of arguments to give flexibility in how they
are called and used.

Keyword Arguments
Passed using parameter names, so order doesn’t matter.
Increases readability and avoids confusion.
Example
greet(age=25, name="Alice")
Default Arguments
Provide default values in the function definition.
If the caller doesn't provide a value, the default is used.
Example
def greet(name, age=18):
print(f'Hello {name}, you are {age} years old.")
greet("Bob") # Uses default age
greet("Alice"”, 30) # Overrides default
Positional Arguments
Passed in the correct position (order matters).
Must match the order of parameters in the function definition.
Example
def greet(name, age):
print(f"Hello {name}, you are {age} years old.")
greet("Alice", 25)
Variable-Length Arguments (*args)
Used when you don’t know how many positional arguments will be passed.
Collected into a tuple.
Example
def total(*numbers):
print("Sum:", sum(numbers))

total(10, 20, 30)

7 b. What is the lambda function in Python? How does it differ from a regular function?

A lambda function in Python is a small, anonymous (unnamed) function defined using the
lambda keyword. It is often used for short, simple operations, especially when a full function
definition is unnecessary.

Syntax of a Lambda Function:
lambda arguments: expression
Example

square = lambda x: x * x
print(square(5))

Lambda vs Regular Function

Feature Lambda Function Regular Function
Dei?med lambda keyword def keyword

using

Name Anonymous (can be assigned to a Has a function name

name)
Return Implicit return Must use return explicitly
. . Can contain multiple lines &

Body Single expression only statements

Use Case Short, simple tasks (often inline) Complex logic and reuse

8 a. What are namespaces in Python? Provide an example illustrating how it prevents
naming conflicts when working modules and functions.

A namespace in Python is a container that holds a mapping between names (identifiers) and
objects (variables, functions, classes, etc.).It ensures that names are unique and helps prevent
naming conflicts.

Types of Namespaces in Python:

Namespace Type Scope
Built-in Automatically created; includes functions like print(), len()
Global Variables defined at the top level of a script or module
Local Variables defined inside a function

Variables in enclosing (outer) functions

Enclosed (nonlocaﬁ"

Example: Avoiding Conflicts Using Namespaces with Modules
Mdule:
math.py
import math
print(math.sqrt(16))
function:
def sqrt(x):
return x ** 0.5
Example: Local vs Global Namespace

x=10
def example():
x=5
print("Inside function:", x)
example()
print("Outside function:", x)

8 b. Create a Python package with two modules one for math operations and one for
string operations. Demonstrate how to import and use these modules.
Folder Structure:

my_package/

|

|—- __init__.py

]— math_operations.py

— string_operations.py

Create the Package Folder

Create a folder named my_package.

Create __init_.py

Inside my_package, add an empty file named __init__.py to make it a Python package.
Create math_operations.py

def add(a, b):
returna+b

def subtract(a, b):
returna-b

def multiply(a, b):
returna* b

def divide(a, b):
ifb!1=0:

returna/b
return "Cannot divide by zero"
Create string_operations.py

defto_upper(s):
return s.upper()

defto_lower(s):
return s.lower()

defreverse_string(s):
return sf::-1]

Using the Package in Another Script

from my_package import math_operations, string_operations
print("Addition:", math_operations.add(5, 3)
print("Division:", math_operations.divide(10, 2))
print("Uppercase:", string_operations.to_upper("hello"))

print("Reversed:", string_operations.reverse_string("Python"))

9 a. Explain the difference between class variables and object variables in Python How
are they defined and accessed?

Key Differences:

Class Variables (Static Variables)

Shared among all instances of the class.

Defined inside the class, but outside any method.
Accessed using the class name or instance name.
Object Variables (Instance Variables)

Unique to each instance (object).

Defined using self inside methods, usually in __init_ ().
Accessed using the object/instance name.

Example

class Student:
school_name = "GVP College"
def __init_ (self, name, age)
self.name = name
self.age = age
s1 = Student("Alice", 20)
s2 = Student("Bob", 22)
print(s1.school_name)
print(s2.school_name)

print(sl.name, s1.age)

print(s2.name, s2.age)
Student.school_name = "ABC University"
print(s1.school name)
print(s2.school_name)

sl.age =21

print(s1.age)

print(s2.age)

9 b. What is method overriding in Python? Write a Python program to demonstrate
method overriding using inheritance.

Method overriding in Python is a feature of inheritance where a subclass provides its own
implementation of a method that is already defined in its parent class.

The method in the child class has the same name, parameters, and signature as the one in the
parent class. When called on a child class object, the child's version overrides the parent's
method.

Program to Demonstrate Method Overriding using inheritance

class Animal:
def sound(self):
print("Animals make sounds.")
class Dog(Animal):
def sound(self):
print("Dog barks.")
class Cat(Animal):
def sound(self):
print("Cat meows.")
a = Animal()
d =Dog()
¢ = Cat()
a.sound()
d.sound()
c.sound()

10 a. Explain the role of the try, except, and finally blocks in Python's exception
handling mechanism with an example program.

Roles of Each Block:

Block Purpose

try iCode that might raise an exception is placed here

exceptflCode that runs if an exception occurs in the try block

finally||Code that always runs, whether an exception occurred or not

Example Program:

def divide_numbers(a, b):
try:
result=a/b
print("Result:", result)
except ZeroDivisionError:
print("Error: Cannot divide by zero!")
finally:
print("Execution complete.")
divide_numbers(10, 2)
print()
divide_numbers(5, 0)

10 b. What are the different modes for opening files in Python. Write a Python program
to reverse the content of the file.
Python’s built-in open() function is used to work with files. It supports several modes:

Common File Modes

Mode Description

I Read (default) — file must exist

w! Write — creates new file or overwrites

Append — adds content to end of file

Create — creates new file, error if exists

b’ Binary mode (e.g., 'rb', 'wb')

'R Text mode (default)

'+ ||Read and write

1]

wt' |Write and read (overwrites)

'at' ||Append and read

Program:

def reverse_{file_content(input_file, output_file):
try:
with open(input_file, 'r') as infile:
content = infile.read()
reversed_content = content[::-1]
with open(output_file, 'w') as outfile:
outfile.write(reversed_content)

print(f"Reversed content written to '{output_file}™)

except FileNotFoundError:
print(f"Error: '{input_file}' not found.")
except Exception as e:
print("An error occurred:", €)
reverse_file_content(‘input.txt', 'reversed_output.txt')

Verified by Prgg.ired by

. o g
(Mr.%

