
UNIT-I

ECONOMIC OPERATION OF POWER SYSTEM-1

1.1 HEAT RATE CURVE:

The heat rate characteristics obtained from the plot of the net heat rate in Btu/kWh or

kcal/kWh versus power output in kW is shown in fig.1 

                                

Fig.1. heat rate curve

The  thermal  unit  is  most  efficient  at  a  minimum heat  rate,  which  corresponds  to  a

particular generation PG.   The curve indicates an increase in heat rate at low and high power

limits.

Thermal efficiency of the unit is affected by following factors:

Condition of steam

System cycle used

Re-heat stages

Condenser pressure,etc.



1.2 COST CURVES: 

To convert the input-output curves into cost curves, the fuel input per hour is multiplied

with the cost of the fuel(expressed on Rs./million kCal).

i.e., (kCal×106)/ hr×Rs./million kCal 

      = million kCal/hr × Rs./million kCal

      =Rs./hr

1.3 INCREMENTAL FUEL COST CURVE:

From the input –output curves, the incremental fuel cost (IFC) curve can be obtained. The

IFC is defined as the ratio of a small change in the input to the corresponding small change in the

output.

Incremental fuel cost =  input /  output

` = ∆ F / PG 

Where  represents small changes.

As  the   quantities  become  progressively  smaller,  it  is  seen  that  the  IFC  is

d(input)/d(output) and is expressed in Rs./MWh. A typical plot of IFC versus output power is

shown in fig(a).

The incremental  cost  curve is  obtained by considering the change in  the  cost  of  the

generation to the change in real-power generation at various points on the input –output curves,

i.e., slope of the input-output curve as shown in fig(b).



Fig:  a) incremental cost curve,  (b) incremental fuel  cost characteristics in

terms of the slope of the input-output curve

The IFC is now obtained as

(IC) i = slope of the fuel cost curve

i.e., tanβ = F/ PG  in Rs./MWh.

The IFC (IC) of the ith thermal unit is defined, for a given power output, as the limit of the

ratio of the increased cost of fuel input (Rs./hr) to the corresponding increase in power output

(MW), as the increasing power output approaches zero.



i.e., (IC) = PGi →0
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Where Ci is the cost of fuel of the ith unit and PGi is the power generation output of that ith

unit.

Mathematically the IFC curve expression can be obtained from the expression of the cost

curve.

1.4 INCREMENTAL PRODUCTION COST:

The  incremental  production  cost  of  a  given  unit  is  made  up  of  the  IFC  plus  the

incremental cost of items such as labor, supplies, maintenance, and water.

It is necessary for a rigorous analysis to be able to express the costs of these production

items as a function of output. However, no methods are presently available for expressing the

cost of labor, supplies, or maintenance accurately as a function of output.

Arbitrary  methods  of  determining  the  incremental  costs  of  labor,  supplies,  and

maintenance are used, the commonest of which is to assume these costs to be a fixed percentage

of the IFCs.

In many systems, for purposes of scheduling generation, the incremental production cost

is assumed to be equal to the IFC. 



1.5  Mathematical     determination  of  optimal  allocation  of  total  load  among

different units:

Consider a power station having ‘n’ number of units. Let us assume that each unit does

not violate the inequality constraints and let the transmission losses be neglected.

The cost of production of electrical energy

C = ∑
i=1

n

C i(PGI )              …….(i) 

Where Ci is the cost function of the ith unit.

This cost is to be minimized to the equality constraint given by

PD = ∑
i=1

n

PGI

Or ∑
i=1

n

PGI - PD ……..(ii)

Where PGi is the real power generation of the ith unit.

This is a constrained optimization problem.

To get  the  solution  for  the  optimization  problem,  we  will  define  an  objective  function  by

augmenting  equation(i)  with  an  equality  constraint  equation(ii)  through  the  legrangian

multiplier(λ) as

Ć = C – λ ∑
i=1

n

PGI

¿
-PD]

Min[ć] = min[C-λ[ ∑
i=1

n

PGI - PD]] ……..(iii)



The condition for optimality of such an augmented objective function is 

∂Ć
∂ PGI

 = 0 

From equation (iii)
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since PD is a constant and is an uncontrolled variable,
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Since the expression of C is in a variable separable form, i.e., the overall cost is the summation

of cost of each generating unit, which is a function of real-power generation of that unit only:

i.e., 
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∂ PG1
=
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(v)  

In equation (v) each of these derivatives represents the individual incremental cost of every unit.

Hence, the condition for the optimal allocation of the total load among the various units, when

neglecting the transmission losses, is that the incremental costs of the individual units are equal.

It is called a co-ordination equation.

Assume that one unit is operating at a higher incremental cost than the other units. If the output

power of that unit is reduced and transferred to units with lower incremental operating costs, then

the  total  operating  cost  decreases.  That  is,  reducing  the  output  of  the  unit  with  the  higher

incremental cost results in a more decrease in cost than the increase in cost of adding the same



output reduction to units with lower incremental costs. Therefore, all units must run with same

incremental operating costs.

After getting the optimal solution, in the case that the generation of any one unit is below its

minimum  capacity  or  above  its  maximum  capacity,  then  its  generation  becomes  the

corresponding limit. For example, if the generation of any unit violates the minimum limit, then

the  generation  of  that  unit  is  set  at  its  minimum specified  limit  and  vice  versa.  Then,  the

remaining demand is allocated among the remaining units as for the above criteria.

In the solution of an optimization problem without considering the transmission losses, we make

use of equal incremental  costs,  i.e.,  the machines are so loaded that  the incremental  cost  of

production of each machine is the same.

Optimum Generation Scheduling (when line losses are accounted)

From the unit commitment table of a given plant, the fuel cost curve of the plant can be

determined in the form of a polynomial of suitable degree by the method of least squares fit. If

the transmission losses are neglected, the total system load can be optimally divided among the

various generating plants using the equal incremental cost criterion. It is, however, unrealistic to

neglect transmission losses particularly when long distance transmission of power is involved.

A modem electric  utility  serves  over  a  vast  area  of  relatively low load  density. The

transmission losses may vary from 5 to 15% of the total load, and therefore, it is essential to

account for losses while developing an economic load dispatch policy. It is obvious that when

losses are present, we can no longer use the simple 'equal incremental cost' criterion. To illustrate

the point,  consider a two-bus system with identical generators at  each bus (i.e.  the same IC

curves). Assume that the load is located near plant 1 and plant 2 has to deliver power via a loss

line. Equal incremental cost criterion would dictate that each plant should carry half the total



load; while it is obvious in this case that the plant 1 should cane a greater share of the load

demand thereby reducing transmission losses. 

In this section, we shall investigate how the load should be shared among various plants,

when line losses are accounted for. The objective is to minimize the overall cost of generation at

any time under equality constraint of meeting the load demand with transmission loss, i.e.

C=∑
i=1

k

Ci(PGi)(2.1)  

∑
i=1

k

PGi−PD−PL=0(2.2)  

where 

k = total number of generating plants 

PGi = generation of iih plant 

PD = sum of load demand in all buses (system load demand) 

PL = total system transmission loss

To solve the problem, we write the Lagrangian as 

L=∑
i=1

k

C i ( PGi )−λ [∑
i=1

k

PGi−PD−PL ](2.3)
It will be shown later in this section that, if the power factor of load at each bus is assumed to

remain constant, the system loss PL can be shown to be a function of active power generation at

each plant, i.e. 

PL=PL ( PG1 ,PG 2, ………… PGk )(2.4)

Thus in the optimization problem posed above, PGi (i=1, 2 ...k) are the only control variables. 

For optimum real power dispatch,



∂ L
∂ PGi

=
d Ci

d PGi

−λ+λ
∂ PL

∂ PGi

=0 i=1,2,….. k (2.5)

Rearranging Eq. (2.5) and recognizing that changing the output of only one plant can affect the

cost at only that plant, we have 

dC i

d PGi

1−
∂ PL

∂ PGi

=λ(2.6)

d C i

d PGi

Li= λ ,i=1,2,…. k (2.7)

where 

Li=
1

1−
∂ PL

∂ PGi

(2.8)

is called the penalty factor of the ith plant.

 The Lagrangian multiplier  λ  is in rupees per megawatt-hour, when fuel cost is in

rupees per hour. Equation (2.6) implies that minimum fuel cost is obtained, when the incremental

fuel cost of each plant multiplied by its penalty factor is the same for all the plants.

The (k + 1)  variables  ( PG1 ,PG 2, ………… PGk , λ )  can  be  obtained from k optimal

dispatch Eq. (2.6) together with the power balance Eq. (2.2). The partial derivative 
∂ PL

∂ PGi
 is

termed to as the incremental transmission loss (ITL), associated with the ith generating plant.

Equation (2.6) can also be written in the alternative form

(IC)i= λ [1−( ITL)i ] i=1,2,……. k (2.9)

This equation is referred to as the exact coordination equation.



Thus it is clear that to solve the optimum load scheduling problem, it is necessary to

compute ITL for each plant,  and therefore we must  determine the functional  dependence of

transmission loss on real powers of generating plants. There are several methods, approximate

and exact,  for developing a transmission loss model.  One of the most important,  simple but

approximate,  methods  of  expressing  transmission  loss  as  a  function  of  generator  powers  is

through B-coefficients. This method is reasonably adequate for treatment of loss coordination in

economic scheduling of load between plants. The general form of the loss formula (derived later

in this section) using B-coefficients is 

PL=∑
m=1

k

∑
n=1

k

PGm Bmn PGn(2.10)

Where 

PGm ,PGn =  real power generation at m, nth plants

Bmn= loss coefficients which are constants under certain assumed operating conditions

If PG’s are in megawatts, Bmn are in reciprocal of megawatts.

Equation (2.10) for transmission loss may be written in the matrix form as 

PL=PG
T Bmn PG (2.11)

Where 

PG=[ PG1

PG2

⋮
PGk

]∧B=[ B11 B12 … B1k

B21 B22 … B2k

⋮ ⋮ … ⋮
Bk 1 B k 2 … Bkk

]
It may be noted that B is a symmetric matrix.

For a three plant system, we can waste the expression for loss as

PL=B11P2G1+B22P2G2+B33 P2G3+2B12PG1 PG2+2B23 PG2PG3+2 B31PG3 PG1(2.12)

With the system power loss model as per Eq. (2.10), we can now write



∂ PL

∂ PGi

=
∂[∑

m=1

k

∑
n=1

k

PGm Bmn PGn]
∂ PGi

∂ PL

∂ PGi

=

∂[∑n=1
n≠ i

k

PGi B¿ PGn+∑
m=1
m≠ i

k

PGm Bmi PGi+PGi Bii PGi ]
∂ PGi

(2.13)

It  may be  noted  that  in  the  above  expression  other  terms  are  independent  of  PGi,  and  are,

therefore, left out.

Simplifying Eq. (2.13) and recognizing that Bij = Bji, we can write

∂ PL

∂ PGi

=∑
j=1

k

2B ij PGj(2.14a)

Assuming quadratic plant cost curves as

Ci ( PGi )=
1
2

ai P
2

Gi+bi PGi+d i

We obtain the incremental cost as

d C i

d PGi

=ai PGi+bi(2.14 b)

Substituting 
∂ PL

∂ PGi
 and 

dC i

d PGi
 from above in the coordination Eq. (2.5), we have

ai PGi+bi+λ∑
j=1

k

2B ij PGj=λ (2.15)

Collecting all terms of PGi and solving for PGi, we obtain

2 Bij PGj−bi+¿ λ

(ai+2 λ Bii ) PGi=−λ∑
j=1
j ≠ i

k

¿

PGi=

1−
bi

λ
−∑

j=1
j ≠i

k

2B ij PGj

ai

λ
+2Bii

; i=1,2,…,k (2.16)



For any particular value of  λ  Eq. (2.16) can be solved iteratively by assuming initial values

of PGi’s (a convenient choice is PGi = 0; i = l, 2... k). Iterations are stopped when PGi’s converge

within specified accuracy.

Derivation of Transmission Loss Formula 

The aim of this article is to give a simpler derivation by making certain assumptions.

Figure 2.1 (c) depicts the case of two generating plants connected to an arbitrary number of loads

through a transmission network. One line within the network is designated as branch p. 

Imagine that the total load current ID is supplied by plant 1 only, as in Fig. 2.1(a). Let the

current in line p be IP1. Define

MP1=Ip1/ID                                                                                                                 (2.17)

Fig. 2.1 Schematic diagram showing two plants connected through a power network to a number

of loads 

Similarly, with plant 2 alone supplying the total load current (Fig. 2.1b), we can define 



MP2=Ip2/ID                                                                                                                 (2.18)

Mp1 and Mp2 are called current distribution factors. The values of current distribution factors

depend upon the impedances of the lines and their interconnection and are independent of the

current ID.

When both generators 1 and 2 are supplying current into the network as in Fig. 2.1(c),

applying the principle of superposition the current in the line p can be expressed as 

 

          IP = MP1 IG1 + MP2 IG2                                                                                               (2.19)

 Where IG1 and IG2 are the currents supplied by plants 1 and 2, respectively.

At this stage let us make certain simplifying assumptions outlined below:

 (1)  All  load  currents  have  the  same  phase  angle  with  respect  to  a  common reference.  To

understand the implications of this assumption consider the load current at the ith bus. It can be

written as

δ
(¿¿ i−∅i)=|I Di|∠θi

|I Di|∠¿

Where  δ i the phase is angle of the bus voltage and  ∅i  is the lagging phase angle of the

load. Since δ i  and ∅i vary only through a narrow range at various buses, it is reasonable to

assume that θi  is the same for all load currents at all times. 

(2) Ratio X/R is the same for all network branches. 

These two assumptions lead us to the conclusion that IP1 and ID (Fig. 2.1(a)) have the same phase

angle and so have IP2 and ID [Fig. 2.1(b)], such that the current distribution factors MP1 and MP2

are real rather than complex.

Let, IG1= |IG1| ∠σ1  and IG2= |IG2| ∠σ2  



Where  ∠σ1  and  ∠σ2  are phase angles of IG1 and IG2,  respectively with respect to the

common reference. 

From Eq. (2.19), we can write 

¿ I P∨¿2=(M P1|I G1|cosσ1+M P2|I G2|cosσ2 )
2+( M P1|IG 1|sin σ 1+M P2|I G2|sin σ2 )

2(2.20)
¿

Expanding the simplifying the above equation, we get 

¿ I P∨¿2=M 2
P1|IG1|

2+M 2
P 2|I G2|

2+2M P1M P 2|I G1||IG 2|cos ⁡(σ1−σ 2)(2.21)
¿

Now |I G1|=
PG1

√3|V 1|cos∅1
  ; |I G2|=

PG2

√3|V 2|cos∅2
      (2.22)

Where PG1 and PG2 are the three-phase real power outputs of plants 1 and 2 at power factors of

cos ∅1   and cos ∅2 , and V1 and V2 are the bus voltages at the plants.

If Rp is the resistance of branch p, the total transmission loss is given by

PL=∑
p

3|I p|
2
R p

Substituting for |I p|
2

 from Eq. (2.21), and |I G1|  and |I G2|  from Eq. (2.22), we obtain

M 2
P1R p+¿

2 PG1PG 2cos ⁡(σ 1−σ2)

|V 1||V 2|cos∅1 cos∅2
∑

p

M P1 M P2 Rp+
PG2

2

|V 2|
2
(cos∅2)

2∑
p

M 2
P2R p(2.23)

PL=
PG1

2

|V 1|
2(cos∅1)

2∑
p

¿
 

Equation (2.23) can be recognized as

PL=PG1
2B11+2PG1 PG2B12B12+PG1

2B11 (2.24)



B11=
1

|V 1|
2(cos∅1)

2∑
p

M 2
P1 Rp

B12=
cos ⁡(σ 1−σ2)

|V 1||V 2|cos∅1cos∅2
∑

p

M P1M P2Rp(2.25)

B22=
1

|V 2|
2(cos∅2)

2∑
p

M2
P2Rp

The terms B11, B12 and B22 are called loss coefficients or B-coefficients. If voltages are line to line

kV with resistances in ohms, the units of B-coefficients are in MW-1. Further, with PG1 and PG2

expressed in MW, PL will also be in MW.

The  above  results  can  be  extended  to  the  general  case  of  k  plants  with  transmission  loss

expressed as

PL=∑
m=1

k

∑
n=1

k

PGm Bmn PGn(2.26)

Where

Bmn=
cos ⁡(σm−σn)

|V m||V n|cos∅m cos∅n

∑
p

M Pm M Pn Rp (2.27)

The following assumptions including those mentioned already are necessary, if B-coefficients are

to be treated as constants as total load and load sharing between plants vary. These assumptions

are:

1, All load currents maintain a constant ratio to the total current.

2. Voltage magnitudes at all plants remain constant.

3. Ratio of reactive to real power, i.e. power factor at each plant remains constant.

4. Voltage phase angles at plant buses remain fixed. This is equivalent to assuming that the plant

currents maintain constant phase angle with respect to the common reference, since source power

factors are assumed constant as per assumption 3 above.




