

COMPUTER ORGANIZATION

IV B.Tech. - I Semester

Department of Computer Science and Engineering

GAYATRI VIDYA PARISHAD COLLEGE OF ENGINEERING FOR WOMEN
www.gvpcew.ac.in(Approved by AICTE & Affiliated to JNTUK)Estd. – 2008

Gandhi Nagar, Madhurawada, Visakhapatnam, Andhra Pradesh 530048.

COURSE FILE

https://www.shiksha.com/college/gayatri-vidya-parishad-college-of-engineering-for-women-visakhapatnam-46521

Course Objectives & Outcomes

Course Objectives:--

 Comprehensive knowledge of computer system including the analysis and design of

components of the system

 Understanding RTL, Micro operations, ALU, Organization of stored program computer,

types of instructions and design of basic components of the system

 Illustration of data paths and control flow for sequencing in CPUs, Microprogramming of

control unit of CPU

 Illustration of algorithms for basic arithmetic operations using binary and decimal

representation

 Description of different parameters of a memory system, organization and mapping of

various types of memories

 Describes the means of interaction devices with CPU, their characteristics, modes and

introduction multiprocessors.

Course Outcomes:--

After completing this Course, the student should be able to:

Understand the architecture of a modern computer with its various processing units. Also the

performance measurement of the computer system. In addition to this the management system of

computer.

 Students have a thorough understanding of the basic structure and operation of a digital

computer.

 Able to discuss in detail the operation of the arithmetic unit including the algorithms &

implementation of fixed-point and floating-point addition, subtraction, multiplication &

division.

 Able to discuss in detail the operation of the arithmetic unit including the algorithms &

implementation of fixed-point and floating-point addition, subtraction, multiplication &

division.

 Students have a thorough understanding of Micro Program Control

 Students can calculate the effective address of an operand by addressing modes

 Understanding of how a computer performs arithmetic operation of positive and negative

numbers.

 Explain the function of each element of a memory hierarchy, Cache memory and its

importance.

 Students can understand how cache mapping occurs in computer and can solve various

problems related to this.

 Study the hierarchical memory system including cache memories and virtual memory.

 Able to identify and compare different methods for computer I/O

 Able to discuss about advantages of parallel processing, multiprocessors.

1. Syllabus

UNIT-I
BASIC STRUCTURE OF COMPUTERS: Computer Types, Functional units, Basic

operational concepts, Bus structures, Software, Performance, multiprocessors and multi

computers. Data types, Complements, Data Representation. Fixed Point Representation.

Floating – Point Representation.

Error Detection codes.

COMPUTER ARITHMETIC: Addition and subtraction, multiplication algorithms,

Division Algorithms, Floating point Arithmetic operations. Decimal Arithmetic unit,

Decimal Arithmetic operations.

UNIT-II
REGISTER TRANSFER LANGUAGE AND MICRO-OPERATIONS:

Register Transfer language. Register Transfer, Bus and memory transfer, Arithmetic Micro-

operations, logic micro operations, shift micro-operations, Arithmetic logic shift unit.

Instruction codes. Computer Registers Computer instructions – Instruction cycle. Memory

Reference Instructions. Input Outputand Interrupt.

CENTRAL PROCESSING UNIT - Stack organization. Instruction formats. Addressing

modes. DATA Transfer and manipulation. Program control. Reduced Instruction set

computer

UNIT-III
MICRO PROGRAMMED CONTROL: Control memory, Address sequencing, micro

program example, Design of control unit-Hard wired control. Micro programmed control.

UNIT-IV
THE MEMORY SYSTEM: Memory Hierarchy, Main memory, Auxiliary memory,

Associative memory, Cache memory, Virtual memory, Memory management hardware

UNIT-V
INPUT-OUTPUT ORGANIZATION : Peripheral Devices, Input-Output Interface,

Asynchronous data transfer Modes of Transfer, Priority Interrupt, Direct memory Access,

Input –Output Processor (IOP), SerialCommunication;

UNIT-VI
 PIPELINE AND VECTOR PROCESSING: Parallel Processing, Pipelining, Arithmetic

Pipeline, Instruction Pipeline, RISC Pipeline Vector Processing, Array Processors. Multi

processors: Characteristics of Multiprocessors, Interconnection Structures, Inter processor

Arbitration. Inter processor Communication and Synchronization, Cache Coherence.

Text Books:

1. M. Moris Mano (2006), Computer System Architecture, 3
rd

 edition, Pearson/PHI, India.

2. Carl Hamacher, ZvonksVranesic, SafeaZaky (2002), Computer Organization, 5
th

 edition, McGraw Hill,

New Delhi, India.

Reference Books:

1. Computer Organization Architecture- William Stallings (2006), 7
th
 edition, PHI/PEARSON.

2. Computer Architecture and Organization-John P.Hayes ,McGraw Hill, International

editions,2002.

Lecture Plan

Lecture

no.

Unit

Number

Topic

1. I Introduction to Computer architecture and Organization

2. I Computer Types, functional Units and Basic Operational Concepts, Bus

structure, software, performance multi processor and multi computer

3. I Data Types ,Number systems, octal and hexadecimal nos, decimal and

alphanumeric representation

4. I Complments-10’s and 9’s Complements; 2’s ans 1’s Complements;

Subtraction of unsigned Nos; fixed point representation and Integer

representation;

5. I Addition of two numbers in signed magnitude system; 2’s complement

addition, subtraction; overflow and overflow detection and decimal fixed

point representation

6. I Floating point representation& Error detection codes

7. I Introduction to computer Arithmetic, addition and subtraction algorithm

for signed magnitude numbers and hardware implementation; addition

and subtraction for signed 2’s complement data

8. I Multiplication algorithm: Hardware implementation for signed

magnitude data, hardware & algorithm;

9. I Booth multiplication algorithm; Array multiplier

10. I Division Algorithm: Hardware implementation for signed magnitude

data, hardware algorithm and other algorithm.

11. I Floating point Arithmetic operations: Basic considerations, register

configurations, addition, subtraction, multiplication and division

12. I Decimal Arithmetic Unit: BCD Adder and BCD Subtraction

13. I Hardware and algorithm for Decimal Arithmetic Operations: Addition

and subtraction.

14. I Hardware and algorithm for Decimal Arithmetic Operations:

multiplication and division, floating point operations

15. II Register transfer Language, Register Transfer, Bus and Memory Transfer

16. II Arithmetic Micro operations; Logic Micro operations

17. II Shift micro operations, Arithmetic logic shift unit

18. II Instruction Codes, Computer register

19. II Computer Instruction and format, Instruction Cycle

20. II Memory Reference Instructions, Input-Output and Interrupt

21. II Stack Organization, register Stack, memory stack, Reverse polish

notation, Conversion to RPN, Evaluation of arithmetic expression

22. II Instruction Formats, 3-types of CPU organization, 3,2,1,0 address

instruction formats, RISC Instructions

23. II Addressing modes; Data Transfer and manipulation instructions

24. II Program Control Instructions, Subroutine call and return instructions,

Program interrupts and types of interrupts

25. II RISC Vs CISC; Overlapping Register windows; Berkeley RISCI

26. III Control memory

27. III Address Sequencing

28. III Micro Program Example: computer configuration, instruction format and

symbolic microinstructions; The fetch routine, symbolic microprogram

and binary microprogram

29. III Design of Control Unit: Hard wired

control.and Micro programmed control

30. IV Memory Hierarchy, Main memory: RAM and ROM chips, memory

address map, memory connection to CPU; Auxiliary memory: Magnetic

Disks and Magnetic Tapes

31. IV Associative Memory: Hardware Organization, Match Logic, read

operation and write operation

32. IV Direct mapping, Set-Associative Mapping, Writing into cache and cache

initialization

33. IV Virtual memory: Address Space and Memory Space, Address Mapping

using pages; Associative memory page table, Page replacement

34. IV Memory management hardware: Segmented page mapping, Numerical

example, Memory Protection

35. V Peripheral Devices, I/O Interface: I/O bus and interface modules; I/O vs

Memory Bus, Isolated vs memory mapped I/O, Examples of I/O

Interface

36. V Asynchronous Data Transfer: Strobe Control, handshaking,

asynchronous serial transfer; Asynchronous Commn Interface, First-in-

first out buffer

37. V Modes of Transfer: Examples of Programmed I/O, Interrupt initiated I/O

software considerations; Priority Interrupt: Daisy Chaining Priority,

parallel priority Interrupt, priority encoder,

38. V Interrupt cycle, software routines and initial and final operations,

Direct Memory Access: DMA Controller and DMA Transfer

39. V Input Output Processor(IOP): CPU –IOP Communication,

40. V IBM 370 I/o channel, Intel 8089 IOP

41. V Serial Communication: Character oriented protocol,

42. V Transmission example, Data transparency and Bit-oriented protocol

43. VI Parallel Processing

44. VI Pipelining, general considerations

45. VI Arithmetic Pipeline, Instruction Pipeline

46. VI RISC Pipeline; Vector Processing: vector operations, matrix

multiplication, memory interleaving,

47. VI superscalar processors and super computers

48. VI Array Processors: Attached Array Processor, SIMD Array Processor

49. VI Characteristics of multi processors

50. VI Interconnection Structure: Timeshared Common Bus, Multiport

Memory, Crossbar Switch, Multistage switching network, Hypercube

Interconnection

51. VI Inter processor arbitration: serial arbitration procedure, parallel

arbitration logic and dynamic arbitration algorithms

52. VI Inter processor communication and synchronization, cache coherence

Unit – I – Basic structure of computers and Computer arithmetic

1.1.1. Unit Objectives:

After reading this Unit, the reader should be able to understand:

- The definition of computer architecture, organization and computer hardware.

- The design aspects of computer hardware and software.

- Functions provided by a digital computer and functional units of a digital computer.

- Processes involved in executing a task, instruction types, connections between memory

and processor and data transfer mechanism between memory and processor.

- Processor registers and their functions interrupt and interrupt service routines.

- Bus, single bus, buffer registers, functions of system software and multiprogramming,

processor performance and performance parameters.

- Multi Processors and multi computers.

- Data types and their representation, number system and their representation.

- Using complements for subtraction

- Fixed point and floating point representation of signed numbers

- Error generation , error detection and error correction codes

BASIC STRUCTURE OF COMPUTERS: Computer Types, Functional units, Basic

operational concepts, Bus structures, Software, Performance, multiprocessors and multi

computers. Data types, Complements, Data Representation. Fixed Point Representation.

Floating – Point Representation.

Error Detection codes.

COMPUTER ARITHMETIC: Addition and subtraction, multiplication Algorithms, Division

Algorithms, Floating point Arithmetic operations. Decimal Arithmetic unit, Decimal

Arithmetic operations.

UNIT SYLLABUS

………

…

………

….

……

1.1.2. Unit Outcomes:

- Student is able to differentiate the various computer types, hardware Vs software, RISC Vs

CISC.

- Student is able to give an outline of functional parts of the computer.

- Student is able to explain basic operational concept of a computer, bus structure & software.

- Student is able to bring out the various performance parameters of a computer

- Student is able to give representation of various data types in Binary Coded format.

- Student is able to do arithmetic operations on signed, fixed point & floating point numbers

using complements.

- Student is able to develop algorithms for arithmetic operations in fixed point & floating point

and decimal numbers and design hardware circuits for them.

- Student is able to make error detection codes and build error detection circuits.

1.1.2.1. Lecture1

lecture-1.docx

1.1.2.2. Lecture-2

lecture-2.pptx

1.1.2.3. Lecture-3

lecture-3'.pptx

1.1.2.4. Lecture-4

lecture-4.pptx

1.1.2.5. Lecture-5

Floatinpoint number representation:

Fixed point numbers represents integers and floating point numbers represent real numbers.

Numeric Format:

A number expressed in scientific notation has a sign, a fractionor significant(or mantissa) and an

expoenent.

Ex: The number is : -1234.5678

Scientific notation is : -1.2345678 * 103. Here the sign is negative, the significant is 1.2345678 and

exponent is 3 and the base is 10. Computers use base as 2.

Disadvantages of Scientific notation:

Most of the numbers can be expressed in many different ways. Ex: -1.2345678*103 = -1234567.8* 10-3

= etc. Computers are more efficient and have much simpler hardware if each number is uniquely

represented.

Normalization as Solution to the problem:

The floating point number must be normalzed, that is, each number’s significant is a fraction with no

leading zeros. Thus the only valid floating point representation for - 1234.5678 is -.12345678* 104 .

Note IEEE 754 uses an exception for this rule.

Special cases:

The number zero has only zeros in its significand and can not be normaliuzed.For this reason a special

value is assigned to zero. Arithmetic algorithms must explicitly check for zero values and treat them as

special cases. +∞ and - ∞ also have special representation and require special treatment.

NaN:

NaN means Not a Number. It represents the result of illegal operations, such as ∞ ÷ ∞ or taking the

square root of a negative number. As with zero and infinity, NaN requires a special treatment in

floating point arithmetic algorithms.

A predefined format for computer storage of floating point number:

Each number is stored in it’s normal form.

Take the number: X = - 1234.5678 ; That is X= XS XFXE

XS is the sign of X; XF is it’s significand and XE is it’s exponent

Since the radix point is located to the left of the most significant bit of the significand , the radix point

is not stored.Thus the value X = -1234.5678 would be stored as XS = 1, XF = 12345678 and XE = 4

Biasing:

In the above representation foe exponent , there is no sign bit for exponent. We can use 2’s

complement form but prevalent practice is to use biasing.

If XE has 4 bits, then it can represent 16 items. That is the numbers from -8 to +7. To do this, a set bias

value is added to the actual exponent. The result is ten stored in XE..For this the bias should be set to 8.

The smallest possible exponent, -8, is represented as -8+bias = -8+8=0 or 0000 in binary.

The largest possible exponent, +7, is represented as +7+ bias =+7+8= 15= 1111 in binary. The

arithmetic algorithms must account for the bias when generating their results.

Characteristics of floating point numbers:

The characteristics are 1. Precision 2. Gap 3. Range

Precision:

It characterizes how precise a floating point value can be. It is defined as the number of bits in the

significand. The greater the number of bits in the significand, the greater is the CPU’s precision and the

more precise is it’s value. Many CPUs have 2 representations for floating point numbers. They are

called single precision and double precision here double precision has twice the number of bits.

Gap:

The gap is the difference between two adjacent values. It’s value depends on the value of the

exponent.

Take the number: X = .10111010 * 23 .

It’s adjacent values are : .10111001 * 23 and .10111011* 23 .

Each number produce a gap of .00000001* 23 .

In general the gap for floating point value X can be expressed as 2(Xe-precision)

Range:

The range of a floating point representation is bounded by it’s smallest and largest possible values.

Overflow and underflow;

Overflow occurs when an operation produces a result that can not be stored in computers’s floating

point registers. Underflow occurs when an operation produces a result between zero and either the

positive or negative smallest possible value.

IEEE 754 Floating point standard:

This standard specifies 2 precision for floating point numbers which are called single precision and

double precision floating point representations.

Single Precision Format:

This format has 32 bits. 1 bit for sign; 8 bits for the exponent; 23 for the significand. The significand

also includes an implied 1 to the left of its radix point(except for special values and denormalized

numbers).

Floating point
representation.docx

Error Detecting
codes.docx

Error Detection codes:

Information is stored as binary codes and are transmitted by serial or parallel communication. During

transmission noise is added to the signal and it may change binary bits in the code from 1 to 0, and vice

versa. An error detection code is a binary code that detects digital errors during transmission. The

detected errors can not be corrected but their presence is indicated.

Parity bit:

The most common error detection code used is the parity bit. A parity bit is an extra bit included with a

binary message to make the total number of 1’s either odd or even. If the message consists of n bits ,

then the error detection code consists of n+1 bits. If the bit added to the message makes the sum of 1’s

odd in the error detection code, then the scheme is called odd-parity. If the sum of bits is even , the

scheme is called even parity scheme.

Message xyz P(odd) P(even) Error detection

code, odd parity

Error detection

code, even parity

000 1 0 0001 0000

001

0 1 0010 0011

010 0 1 0100 0101

011 1 0 0111 0110

100 0 1 1000 1001

101 1 0 1011 1011

110 1 0 1101 1101

111 0 1 1110 1111

Parity Generator and Parity Checker:

X

Y

z

 odd Parity out

Parity Checker:

X

Y

z

Parity out from generator

Error

 Indication

The circuit arrangement checks the occurrence of error any odd number of times. An even number of

errors is not detected.

We note that P(even) function is the exclusive –OR x,y,z because it is equal to 1 when either one or all 3

of the variables are equal to 1. The P(odd) function is the complement of the P(even) function.

Assume at the sending end the message bits and odd parity bit is generated. The EX-OR gates generate

P(even) function and to generate P(odd), the complement of P(even) is used.

The 4 bits transmitted has an odd number of I’s. If an error occurs during transmission, then the number

of 1’s become even. Hence parity checker checks for even parity.

1.1.2.6. Lecture-6

COMPUTER ARITHMETIC:

Addition, subtraction, multiplication are the four basic arithmetic operations. Using these operations

other arithmetic functions can be formulated and scientific problems can be solved by numerical

analysis methods.

Arithmetic Processor:

It is the part of a processor unit that executes arithmetic operations. The arithmetic instructions

definitions specify the data type that should be present in the registers used . The arithmetic instruction

may specify binary or decimal data and in each case the data may be in fixed-point or floating point

form.

Fixed point numbers may represent integers or fractions. The negative numbers may be in signed-

magnitude or signed- complement representation. The arithmetic processor is very simple if only a

binary fixed point add instruction is included. It would be more complicated if it includes all four

arithmetic operations for binary and decimal data in fixed and floating point representations.

Algorithm:

Algorithm can be defined as a finite number of well defined procedural steps to solve a problem.

Usually, an algorithm will contain a number of procedural steps which are dependent on results of

previous steps. A convenient method for presenting an algorithm is a flowchart which consists of

rectangular and diamond –shaped boxes. The computational steps are specified in the rectangular

boxes and the decision steps are indicated inside diamond-shaped boxes from which 2 or more

alternate path emerge.

Addition and Subtraction:

3 ways of representing negative fixed point binary numbers:

1. Signed-magnitude representation---- used for the representation of mantissa for floating point

operations by most computers.

2. Signed-1’s complement

3. Signed -2’s complement—Most computers use this form for performing arithmetic operation

with integers

Addition and subtraction algorithm for signed-magnitude data

Let the magnitude of two numbers be A & B. When signed numbers are added or subtracted,

there are 4 different conditions to be considered for each addition and subtraction depending

on the sign of the numbers. The conditions are listed in the table below. The table shows the

operation to be performed with magnitude(addition or subtraction) are indicated for different

conditions.

Sl.No Operation

Add

Magnitudes

Subtract magnitudes

When A> B When A< B When A=B

1 (+A) + (+B) + (A + B)

2 (+A) + (-B) +(A-B) -(B-A) +(A-B)

3 (-A) + (+B) -(A-B) +(B-A) +(A-B)

4 (-A) + (-B) - (A + B)

5 (+A) - (+B) +(A-B) -(B-A) +(A-B)

6 (+A) - (-B) + (A + B)

7 (-A) - (+B) - (A + B)

8 (-A) - (-B) -(A-B) +(B-A) +(A-B)

The last column is needed to prevent a negative zero. In other words, when two equal numbers

are subtracted, the result should be +0 not -0.

The algorithm for addition and subtraction (from the table above):

Addition Algorithm:

When the signs of A and B are identical, add two magnitudes and attach the sign of A to the

result. When the sign of A and B are different, compare the magnitudes and subtract the

smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the

complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make

te sign of the result positive.

Subtraction algorithm:

When the signs of A and B are different, add two magnitudes and attach the sign of A to the

result. When the sign of A and B are identical, compare the magnitudes and subtract the

smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the

complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make

te sign of the result positive.

Hardware Implementation:

Let A and B are two registers that hold the numbers.

AS and BS are 2, flip-flops that hold sign of corresponding numbers. The result is stored In A and

AS .and thus they form Accumulator register.

We need to perform micro operation, A+ B and hence a parallel adder.

A comparator is needed to establish if A> B, A=B, or A<B.

We need to perform micro operations A-B and B-A and hence two parallel subtractor.

An exclusive OR gate can be used to determine the sign relationship, that is, equal or not.

Thus the hardware components required are a magnitude comparator, an adder, and two

subtractors.

Reduction of hardware by using different procedure:

1. We know subtraction can be done by complement and add.

2. The result of comparison can be determined from the end carry after the subtraction.

We find An adder and a complementer can do subtraction and comparison if 2’s

complement is used for subtraction.

Hardware forsigned-magnitude addition and subtraction:

AVF Add overflow flip flop. It hold the overflow bit when A & B are added.

Flip flop E—Output carry is transferred to E. It can be checked to see the relative magnitudes of the two

numbers.

A-B = A +(-B)= Adding a and 2’s complement of B.

The A register provides other micro operations that may be needed when the sequence of steps in the

algorithm is specified.

The complementer Passes the contents of B or the complement of B to the Parallel Adder depending on

the state of the mode control B. It consists of EX-OR gates and the parallel adder consists of full adder

circuits. The M signal is also applied to the input carry of the adder.

When input carry M=0, the sum of full adder is A +B. When M=1, S = A + B’ +1= A – B

Hardware algorithm:

Flow Chart for Add and Subtract operations:

The EX-OR gate provides 0 as output when the signs are identical. It is 1 when the signs are different.

A + B is computed for the following and the sum is stored in EA:

1. When the signs are same and addition operation is required.

2. When the signs are different and subtract operation is required.

The carry in E after addition indicates an overflow if it is 1 and it is transferred to AVF, the

addoverflow flag

A-B = A+ B’+1 computed for the following:

1. When the signs are different and addition operation is required.

2. When the signs are same and subtract operation is required.

No overflow can occur if the numbers are subtracted and hence AVF is cleared to Zero.

[the subtraction of 2 n-digit un signed numbers M-N (N≠0) in base r can be done as follows:

1. Add minuend M to thee r’s complement of the subtrahend N. This performs M-N +rn .

2. If M ≥ N, The sum will produce an end carry rnwhich is discarded, and what is left is the result M-N.

3. If M< N, the sum does not produce an end carry and is equal to rn–(N-M), which is the r’s complement of the sum and place a negative

sign in front.]

A 1 in E indicates that A ≥ B and the number in A is the correct result.

If this number in A is zero, the sign AS must be made positive to avoid a negative zero.

A 0 in E indicates that A< B. For this case it is necessary to take the 2’s complement of

the value in A.

In the algorithm shown in flow chart, it is assumed that A register has circuits for micro

operations complement and increment. Hence two complement of value in A is

obtained in 2, micro operations. In other paths of the flow chart , the sign of the result is

the same as the sign of A, so no change in AS is required.

However When A < B, the sign of the result is the complement of original sign of A.

Hence The complement of AS stored in AS.

Final Result: AS A

Flow chart for ADD and Subtract operations:

Addition and Subtraction with signed-2’s complement Data.:

Arithmetic Addition:

This method does not need a comparison or subtraction but only addition and

complementation. The procedure is as below:

1. Represent the negative numbers in 2’s complement form.

2. Add the two numbers including the sign bits and discard any carry out of sign bit

position.

3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign

bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is

set to zero.

4. If the result is negative, take the 2’s complement of the result to get a correct

negative result.

Arithmetic Subtraction:

1. Represent the negative numbers in 2’s complement form.

2. Take the 2’s complement of the subtrahend including the sign bit and add it to the

minuend including the sign bit.

3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign

bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is

set to zero.

4. Discard the carry out of the sign bit position.

Note: A subtraction operation can be changed to an addition operation if the sign of the subtrahend is

changed.

 Overflow

 Fig: Hardware for Signed 2/s complement for addition/ subtractioin.

lecture-6.docx

BR Register

Complementer&Parallel Adder

AC Register

V

1.1.2.7.

Lecture-7

Multiplication Algorithm:

Hardware implementation of multiplication of numbers in signed – magnitude form:

1. A adder is provided to add two binary numbers and the partial product is accumulated in a register.

2. Instead of shifting the multiplicand to the left, the partial product is shifted to the right, which result

in leaving the partial product and the multiplicand in the required relative positions.

3. When the corresponding bit of the multiplier is zero, there is no need to add all zeros to the partial

product, since it will not alter it’s value.

The hardware consists of 4 flipflops, 3 registers, one sequence counter , an adder and complementer.

Q register&QS flip flop : contains multiplier & Its sign
Sequence counter : It is set to a value equal to the number of bits in the multiplier
 B Register& BS flipflop : It contains the multiplicand,& its sign
A Register, E Flip flop : Initialized to ‘ 0’. AS denotes sign of partial product
EA Register : hold partial product, with carry generated in addition being shifted to E .
Qn : Rightmost bit of the multiplier; AQ : will contain the final product.

As AQ represent product register, both AS QSrepresent the sign of the partial product or product.
The number to be multiplied are stores in memory as n bit sign magnitude numbers and when
transferred to register msb bit go to sign flipflop and remaining n-1 bits go to registers. Hence SC is
initially set to n-1.
Let the lower order bit of the multiplier in Qntested.
If it is 1, the multiplicand in B is added to the present partial product in A.
If it is a ‘0’, nothing is done. Register EAQ is then shifted once to the right to form the new partial
product. The sequence counter is decremented by 1 and it’s new value checked. If it is not equal to
zero, the process is repeated and a new partial product is formed. The process stops when SC = 0.

The final product is available in both A and Q, with A holding the most significant bits and Q holding the
least significant bits.

Flowchart for multiply operation:

Numerical Example for the above algorithm:

Multiplicand B= 10111 E A Q SC

Multiplier in Q

Qn =1;add B

First Partial Product

Shift Right EAQ

0

0

0

00000

10111

10111

01011

10011

11001

101

100

Qn =1;add B

Second Partial Product

1

10111

00010

Shift Right EAQ 0 10001 01100 011

Qn =0; Shift Right EAQ 0 01000 10110 010

Qn =0; Shift Right EAQ 0 00100 01011 001

Qn =1;add B

Fifth Partial Product

Shift Right EAQ

0

0

10111

11011

01101

10101

000

Final Product in AQ

AQ = 0110110101

lecture-7.docx

1.1.2.8. Lecture-8

Booth Multiplication Algorithm:

Multiplication of signed- 2’s complement integers:

This algorithm uses the following facts.

1. A string of 0’s in the multiplier requires no addition but just shifting.

2. A string of 1’s in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1 - 2m.

Example: Consider the binary number: 001110(+14)

The number has a string of 1’s from 23 to 21 . Hence k = 3 and m= 1. As other bits are 0’s, the

number can be represented as 2k+1 - 2m = 24 – 21 = 16-2 = 14. Therefore the multiplication M * 14 ,

where M is the multiplicand and 14 the multiplier can be done as Mx 24 –M x 21.

This can be achieved by shifting binary multiplicand M four times to the left and subtracting M

shifted left once which is equal to (Mx 24 –M x 21.).

Shifting and addition/subtraction rules for multiplicand in Booth’s Algorithm:

1. The multiplicand is subtracted from the partial product upon encountering the first least

significand 1 in a string of I’s in the multiplier.

2. The multiplicand is added to the partial product upon encountering the first 0 (provided that

there was a previous 1)in a string of 0’s in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous

multiplier bit

Hardware Implementation of Booth Algorithm:

Note: Sign bit is not separated from register. QR register contains the multiplier register and

Qnrepresent the least significant bit of the multiplier in QR. Qn+1 is an extra flip flop appended to

QR to facilitate a double bit inspection of the multiplier.

AC register and appended Qn+1 are initially cleared to 0.

Sequence counter Sc is set to the number n which is equal to the number of bits of bits In the

multiplier.

QnQn+1 are to successive bits in the multiplier

Example for multiplication using Boot h algorithm:

QnQn+1 BR = 1011 ,𝐵𝑅′+1 = 01001 AC QR Qn+1 SC

10 Initial

Subtract BR

ashr

00000

01001

01001

00100

10011

11001

0

1

101

100

11 ashr 00010 01100 1 011

01 Add BR

ashr

10111

11001

11100

10110

0

010

00

ashr 11110 01011 0 001

10 Subtract BR 01001

Ashr

00111

00011

10101

1

000

Algorithm in flowchart for multiplication of signed 2’s complement numbers.

Array Multiplier:

2 -bit by 2- bit Array Multiplier:

Multiplicand bits are b1 and b0 .Multiplier bits are a1 and a0 .The first partial product is obtained

by multiplying a0 by b1 b0 . The bit multiplication is implemented by AND gate. First partial

product is made by two AND gates. Second partial product is made by two AND gates. The two

partial products are added with two half adder circuits.

Combinational circuit binary multiplier:

A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there bits in the

multiplier. The binary output in each level of the AND gates is added in parallel with the partial product

of the previous level to form a ne partial product. The last level produces the product. For j multiplier

and k multiplicand bits, we need j*k AND Gates and (j-1)*k bit adders to ptoduce a product of j+k bits.

4- bit by 3-bit Array Multiplier:

lecture-8.docx

1.1.2.9. Lecture-9

Division Algorithms:

Division Process for division of fixed point binary number in signed –magnitude representation:

Let dividend A consists of 10 bits and divisor B consists of 5 bits.

1. Compare the 5 most significant bits of the dividend with that of divisor.

2. If the 5 bit number is smaller than divisor B, then take 6 bits of the dividend and compare with the 5 bit divisor.

3. The 6 bit number is greater than divisor B. Hence place a 1 for the quotient bit in the sixth position above the

dividend. Shift the divisor once to the right and subtracted from the dividend. The difference is called partial

remainder.

4. Repeat the process with the partial remainder and divisor. If the partial remainder is equal or greater than or equal to

the divisor, the quotient bit is equal to 1.The divisor is then shifted right and subtracted from the partial remainder. If

the partial remainder is small than the divisor, then the quotient bit is zero and no subtraction is needed. The divisor

is shifted once to the right in any case,.

Hardware Implementation of division for signed magnitude fixed point numbers:

To implement division using a digital computer, the process is changed slightly for convenience.

1. Instead of shifting the divisor to the right, the dividend or the partial remainder, is shifted to the left so as to

leave the two numbers in the required relative position.

2. Subtraction may be achieved by adding A (dividend)to the 2’s complement of B(divisor). The information about

the relative magnitude is then available from end carry.

3. Register EAQ is now shifted to the left with 0 inserted into Qn and the previous value of E is lost..

4. The divisor is stored in B register and the double length dividend is stored in registers A and Q.

5. The dividend is shifted to the left and the divisor is subtracted by adding it’s 2’s complement value.

6. If E= 1, it signifies that A ≥ B.A quotient bit is inserted into Qnand the partial remainder is shifted to the left to

repeat the process.

7. If E = 0, it signifies that A < B so the quotient Qn remains 0(inserted during the shift). The value of B is then

added to restore the partial remainder in A to its previous value. The partial remainder is shifted to the left and

the process is repeated again until all 5 quotient bits are formed.

8. At the end Q contains the quotient and A the remainder. If the sign of dividend and divisor are alike, the quotient

is positive and if unalike, it is negative. The sign of the remainder is the same as dividend.

Qn

 0

Hardware for implementing division of fixed point signed- Magnitude Numbers

Example of Binary division with digital hardware: Divisor B = 10001, B + 1 = 01111

 E A Q SC

 Dividend: 01110 00000 5

 Shl EAQ 11100 00000

 Add , B + 1 01111

 E = 1 1 01011

 Set Qn= 1 1 01011 00001 4

 Shl EAQ 0 10110 00010

 Add , B + 1 01111

 E = 1 1 00101

 Set Qn= 1 1 00101 00011 3

 Shl EAQ 0 01010 00110

 Add , B + 1 01111

 E= 0; Leave Qn= 0 0 11001 00110

 Add B 10001

B Register

Complementer and parallel

adder

A Register Q Register

Sequence Counter(SC)

AS

QS

E

 Restore remainder 1 01010 2

 Shl EAQ 0 10100 01100

 Add , B + 1 01111

 E = 1 1 00011

 Set Qn= 1 1 00011 01101 1

 Shl EAQ 0 00110 11010

 Add , B + 1 01111

 E= 0; Leave Qn= 0 0 10101 11010

 Add B 10001

 Restore remainder 1 00110 11010 0

 Neglect E

 Remainder in A 00110 11010

 Quotient in Q

Divide overflow:

When the dividend is twice as long as the divisor, the condition for overflow can be stated as follows:

A divide-overflow condition occurs if the higher order half bits of the dividend constitute a number

greater than or equal to the divisor. If the divisor is zero, then the dividend will definitely be greater

than or equal to divisor. Hence divide overflow condition occurs and hence the divide-overflow –flip flop

will be set. Let the flip flop be called DVF.

Handling DVF:

1. Check if DVF is set after each divide instruction. If DVF is set, then the program branches to a

subroutine that takes corrective measures such as rescaling the data to avoid overflow.

2. An interrupt is generated if DVF is set. The interrupt causes the processor to suspend the

current program and branch to interrupt service routine to take corrective measure. The most

common corrective measure is to remove the program and type an error message that explains

the reasons.

3. The divide overflow can be handled very simply if the numbers are represented in floating point

representation.

Flow chart for divide operation:

Assumption:

Operands are transferred from memory to registers as n bit words.n-1 bit form magnitude and 1 bit

shows the sign.

A divide overflow condition is tested by subtracting the divisor in B from half of the bits of dividend

stored in A. If vA ≥ B, the DVF is set and the operation is terminated prematurely. If A < B, no DVF occurs

and so the value of dividend is restored by adding B to A.

The division of the magnitudes starts by shifting the dividend in AQ to the left, with the higher order bit

shifted into E. If the bit shifted into E is 1, we know that EA is greater than B because EA consists of a 1

followed by n-1 bits while B consists of only n-1 bits. In this case, B must be subtracted from EA and 1

inserted into Qn for the quotient bit. Since register A is missing the higher order bit of the dividend

(which is in E), it’s value is EA – 2n-1 . Adding to this value the 2’s complement of B results in

(EA-2n-1) + (2n-1 –B)= E-B. The carry from the addition is not transferred to E if we want E to remain a 1.

If the shift left operation inserts a zero into E, the divisor is subtracted by adding it’s 2’s complement

value and the carry is transferred into E. If E = 1, it signifies that A ≥ B and hence Qn is set to 1. If E = 0, it

signifies that A < B and the original number is restored by adding B to A. In the latter case we leave a 0 in

Qn .(0 was inserted during the shift).

This process is repeated again with register A holding the partial remainder. After n-1 times, the

quotient magnitude is formed in the register Q and the remainder is found in register A.

lecture-9.docx

1.1.2.10. Lecture-10

Lecture-10

CO UNIT4 floating

point arithmetic.pptx

2.

lecture-10.docx

1.1.2.11 Lecture-11

3.

4.

lecture-11.docx

1.1.2.12 Lecture-12

lecture-12.docx

1.1.2.13 Lecture-13

2

lecture-13.docx

1.1.2.14 Test Questions

4.1.5.a.docx

4.1.5.b.docx true or false.docx

1.1.2.15 Fill in the blanks type of questions <Minimum of ten>

a. The decimal representation for hex number F3 is .

b. The binary equivalent for the decimal number 41.6875 is

c. The BCD code for the decimal number 248 is .

d. For a given number N in base r having n digits, the (r-1)’s complement of N is defined as

e. The 10’s complement of a decimal number is obtained by adding to the 9’s complement

value.

f. When 2 unsigned numbers are added, an overflow is detected from the of

the most significant position.

g. An overflow for addition/ subtraction of two signed numbers is detected when the carry into

the sign bit position and carry out of the sign bit position are .

h. Booth multiplication algorithm is followed when the binary integers are represented in

i. When Booth algorithm is used for multiplication, the partial product does not change when the

multiplier .is identical to the previous multiplier .

j. Floating point multiplication and division do not require an alignment of the .

Answers: (1). 243 (2) 101001.1011 (3) 0010 0100 1000

 (4) (rn-1)-N (5) 1 (6) carry out (7) not equal

 (8) signed 2’s complement representation for negative integers. (9) bit, bit

 (10) mantissa

1.1.2.16. Multiple choice questions<Minimum of ten>

1. Floating point representation is used to store
(A) Boolean values (B) whole numbers (C) real integers (D) integers
Ans: C

2. In computers, subtraction is generally carried out by
(A) 9’s complement (B) 10’s complement (C) 1’s complement (D) 2’s complement

Ans: D

3. The circuit used to store one bit of data is known as
(A) Register (B) Encoder (C) Decoder (D) Flip Flop
Ans: D

4. Which of the following is not a weighted code?
(A) Decimal Number system (B) Excess 3-cod
(C) Binary number System (D) None of these
Ans: B

5. Assembly language
(A) uses alphabetic codes in place of binary numbers used in machine language
(B) is the easiest language to write programs
(C) need not be translated into machine language

(D) None of these
Ans: A

6. The multiplicand register & multiplier register of a hardware circuit implementing booth's
algorithm have (11101) & (1100). The result shall be
(A) (812) 10 (B) (-12) 10 (C) (12) 10 (D) (-812) 10
Ans: A

7. What characteristic of RAM memory makes it not suitable for permanent storage?
(A) too slow (B) unreliable (C) it is volatile (D) too bulky
Ans: C

8. (2FAOC) 16 is equivalent to
(A) (195 084) 10 (B) (001011111010 0000 1100) 2 (C) Both (A) and (B) (D) None of these
Ans: B

9. The average time required to reach a storage location in memory and obtain its contents is
called the
(A) seek time (B) turnaround time (C) access time (D) transfer time
Ans: C

10. In signed-magnitude binary division, if the dividend is (11100) 2 and divisor is (10011) 2 then
the result is
(A) (00100) 2 (B) (10100) 2 (C) (11001) 2 (D) (01100) 2

k. Ans: B

True or False questions<Minimum of ten>

1.1.2.17. Fill the blank with true or false.
1. EEPROM comes under volatile memory category.

2. Thumb drive or pen drive is semiconductor memory.

3. The control unit generates the appropriate signal at the right moment.

4. While executing a program, CPU brings instruction and data from disk memory.

5. A memory module of capacity 16 * 4 , indicates a storage of 128 bits.

6. A memory module of capacity of 1024 locations, the required address bus size is 10.

7. The program counter PC is used to store the address of the next instruction to be fetched from

Accumulator.

.

8. For n-bit signed integer, the range of numbers that can be represented is – 2n-1 to 2n+1
.

9. Given a number N in base r having n digits, the (r-1)’s complement of N is defined as

(rn-1) – r.

10. Floating point representation uses mantissa and an exponent part of radix R .

Answers: (1). false (2) true (3) true (4) false (5) false

 (6) true (7) false (8) false (9)false (10) true

1.1.2.18. Review Questions

4.1.6.a.docx 4.1.6.b.docx 4.1.6. d.docx 4.1.6.e.docx 4.1.6.c.docx

a. Objective type of questions(Very short notes)<Minimum of ten>

b. Analytical type questions<Minimum of ten>

c. Essay type Questions<As per requirements>

d. Problems<As per required Number>

e. Case study<As per required Number>

1.1.2.19. Skill Building Exercises/Assignments

a. Take the mother board of a computer and identify CPU, memory, peripheral ICs, BUS etc.

b. Buy the components of a computer, assemble, install the software and make it to function.

Eg:- -Prepare a model of something

-Trace something

-Prepare a report on something etc.,

1.1.2.20. Previous Questions (Asked by JNTUK from the concerned Unit)

JNTUK questions
unit-1.docx

1.1.2.21. GATE Questions (Where relevant)

Subject is not in gate syllabus

1.1.2.22. Interview questions (which are frequently asked in a Technical

round-Placements)

4.1.10.docx

1.1.2.23. Real-Word (Live) Examples/Case studies wherever applicable

a. List out the intel CPUs in various generation with their specifications. Write how the

performance was improved in each generation.

1.1.2.24. Suggested “Expert Guest Lectures” (both from in and outside of

the campus)

1.1.2.25. Literature references of Relevant NPTEL Videos/Web/You Tube

videos etc.

neptel vidieo
ref.docx

1.1.2.26. Any Lab requirements; if so link it to Lab Lesson Plan.

 No.

1.1.2.27. Reference Text Books / with Journals Chapters etc.

T1: M. Moris Mano (2006), Computer System Architecture, 3
rd

 edition, Pearson/PHI, India.

T2: Carl Hamacher, ZvonksVranesic, SafeaZaky (2002), Computer Organization, 5
th
 edition,

McGraw Hill, New Delhi, India

R1: Computer Organization Architecture- William Stallings (2006), 7
th
 edition,

PHI/PEARSON.

