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Course Objectives & Outcomes

Course Obijectives:--

Comprehensive knowledge of computer system including the analysis and design of
components of the system

Understanding RTL, Micro operations, ALU, Organization of stored program computer,
types of instructions and design of basic components of the system

Illustration of data paths and control flow for sequencing in CPUs, Microprogramming of
control unit of CPU

Illustration of algorithms for basic arithmetic operations using binary and decimal
representation

Description of different parameters of a memory system, organization and mapping of
various types of memories

Describes the means of interaction devices with CPU, their characteristics, modes and

introduction multiprocessors.

Course Outcomes:--

After completing this Course, the student should be able to:

Understand the architecture of a modern computer with its various processing units. Also the

performance measurement of the computer system. In addition to this the management system of

computer.

Students have a thorough understanding of the basic structure and operation of a digital

computer.

Able to discuss in detail the operation of the arithmetic unit including the algorithms &
implementation of fixed-point and floating-point addition, subtraction, multiplication &
division.

Able to discuss in detail the operation of the arithmetic unit including the algorithms &
implementation of fixed-point and floating-point addition, subtraction, multiplication &
division.

Students have a thorough understanding of Micro Program Control



Students can calculate the effective address of an operand by addressing modes
Understanding of how a computer performs arithmetic operation of positive and negative
numbers.

Explain the function of each element of a memory hierarchy, Cache memory and its
importance.

Students can understand how cache mapping occurs in computer and can solve various
problems related to this.

Study the hierarchical memory system including cache memories and virtual memory.
Able to identify and compare different methods for computer I/O

Able to discuss about advantages of parallel processing, multiprocessors.



1. Syllabus

UNIT-I

BASIC STRUCTURE OF COMPUTERS: Computer Types, Functional units, Basic
operational  concepts, Bus structures, Software, Performance, multiprocessors and multi
computers. Data types, Complements, Data Representation. Fixed Point Representation.
Floating — Point Representation.

Error Detection codes.

COMPUTER ARITHMETIC: Addition and subtraction, multiplication algorithms,
Division Algorithms, Floating point Arithmetic operations. Decimal Arithmetic unit,
Decimal Arithmetic operations.

UNIT-1I

REGISTER TRANSFER LANGUAGE AND MICRO-OPERATIONS:

Register Transfer language. Register Transfer, Bus and memory transfer, Arithmetic Micro-
operations, logic micro operations, shift micro-operations, Arithmetic logic shift unit.
Instruction codes. Computer Registers Computer instructions — Instruction cycle. Memory
Reference Instructions. Input Outputand Interrupt.

CENTRAL PROCESSING UNIT - Stack organization. Instruction formats. Addressing
modes. DATA Transfer and manipulation. Program control. Reduced Instruction set
computer

UNIT-I1I

MICRO PROGRAMMED CONTROL: Control memory, Address sequencing, micro
program example, Design of control unit-Hard wired control. Micro programmed control.

UNIT-1V
THE MEMORY SYSTEM: Memory Hierarchy, Main memory, Auxiliary memory,
Associative memory, Cache memory, Virtual memory, Memory management hardware
UNIT-V
INPUT-OUTPUT ORGANIZATION : Peripheral Devices, Input-Output Interface,
Asynchronous data transfer Modes of Transfer, Priority Interrupt, Direct memory Access,
Input —Output Processor (IOP), SerialCommunication;
UNIT-VI

PIPELINE AND VECTOR PROCESSING: Parallel Processing, Pipelining, Arithmetic
Pipeline, Instruction Pipeline, RISC Pipeline Vector Processing, Array Processors. Multi
processors: Characteristics of Multiprocessors, Interconnection Structures, Inter processor
Arbitration. Inter processor Communication and Synchronization, Cache Coherence.

Text Books:

1. M. Moris Mano (2006), Computer System Architecture, 3" edition, Pearson/PHI, India.
2. Carl Hamacher, ZvonksVranesic, SafeaZaky (2002), Computer Organization, 5" edition, McGraw Hill,
New Delhi, India.

Reference Books:

1. Computer Organization Architecture- William Stallings (2006), 7" edition, PHI/PEARSON.



2. Computer Architecture and Organization-John P.Hayes ,McGraw Hill, International

editions,2002.

Lecture Plan

Lecture Unit Topic
no. Number

1. I Introduction to Computer architecture and Organization

2. I Computer Types, functional Units and Basic Operational Concepts, Bus
structure, software, performance multi processor and multi computer

3. I Data Types ,Number systems, octal and hexadecimal nos, decimal and
alphanumeric representation

4, | Complments-10’s and 9’s Complements; 2’s ans 1’s Complements;
Subtraction of unsigned Nos; fixed point representation and Integer
representation;

S. | Addition of two numbers in signed magnitude system; 2’s complement
addition, subtraction; overflow and overflow detection and decimal fixed
point representation

6. I Floating point representation& Error detection codes

7. I Introduction to computer Arithmetic, addition and subtraction algorithm
for signed magnitude numbers and hardware implementation; addition
and subtraction for signed 2’s complement data

8. I Multiplication algorithm: Hardware implementation for signed
magnitude data, hardware & algorithm;

9. I Booth multiplication algorithm; Array multiplier

10. I Division Algorithm: Hardware implementation for signed magnitude
data, hardware algorithm and other algorithm.

11. I Floating point Arithmetic operations: Basic considerations, register
configurations, addition, subtraction, multiplication and division

12. I Decimal Arithmetic Unit: BCD Adder and BCD Subtraction

13. I Hardware and algorithm for Decimal Arithmetic Operations: Addition

and subtraction.




14. I Hardware and algorithm for Decimal Arithmetic Operations:
multiplication and division, floating point operations

15. I Register transfer Language, Register Transfer, Bus and Memory Transfer

16. I Arithmetic Micro operations; Logic Micro operations

17. I Shift micro operations, Arithmetic logic shift unit

18. I Instruction Codes, Computer register

19. I Computer Instruction and format, Instruction Cycle

20. I Memory Reference Instructions, Input-Output and Interrupt

21. I Stack Organization, register Stack, memory stack, Reverse polish
notation, Conversion to RPN, Evaluation of arithmetic expression

22. I Instruction Formats, 3-types of CPU organization, 3,2,1,0 address
instruction formats, RISC Instructions

23. I Addressing modes; Data Transfer and manipulation instructions

24, I Program Control Instructions, Subroutine call and return instructions,
Program interrupts and types of interrupts

25. I RISC Vs CISC; Overlapping Register windows; Berkeley RISCI

26. 11 Control memory

27. i Address Sequencing

28. I Micro Program Example: computer configuration, instruction format and
symbolic microinstructions; The fetch routine, symbolic microprogram
and binary microprogram

29. I Design of Control Unit: Hard wired
control.and Micro programmed control

30. v Memory Hierarchy, Main memory: RAM and ROM chips, memory
address map, memory connection to CPU; Auxiliary memory: Magnetic
Disks and Magnetic Tapes

31. v Associative Memory: Hardware Organization, Match Logic, read

operation and write operation




32. v Direct mapping, Set-Associative Mapping, Writing into cache and cache
initialization

33. v Virtual memory: Address Space and Memory Space, Address Mapping
using pages; Associative memory page table, Page replacement

34. v Memory management hardware: Segmented page mapping, Numerical
example, Memory Protection

35. \ Peripheral Devices, 1/0O Interface: 1/0 bus and interface modules; 1/0O vs
Memory Bus, Isolated vs memory mapped 1/O, Examples of 1/0
Interface

36. \Y Asynchronous Data Transfer: Strobe Control, handshaking,
asynchronous serial transfer; Asynchronous Commn Interface, First-in-
first out buffer

37. \ Modes of Transfer: Examples of Programmed I/O, Interrupt initiated 1/0
software considerations; Priority Interrupt: Daisy Chaining Priority,
parallel priority Interrupt, priority encoder,

38. \Y Interrupt cycle, software routines and initial and final operations,
Direct Memory Access: DMA Controller and DMA Transfer

39. \ Input Output Processor(IOP): CPU —IOP Communication,

40. \ IBM 370 I/o channel, Intel 8089 IOP

41. \ Serial Communication: Character oriented protocol,

42. \ Transmission example, Data transparency and Bit-oriented protocol

43. VI Parallel Processing

44, VI Pipelining, general considerations

45, VI Arithmetic Pipeline, Instruction Pipeline

46. VI RISC Pipeline; Vector Processing: vector operations, matrix
multiplication, memory interleaving,

47. VI superscalar processors and super computers

48. VI Array Processors: Attached Array Processor, SIMD Array Processor

49, VI Characteristics of multi processors




50. Vi Interconnection Structure: Timeshared Common Bus, Multiport
Memory, Crossbar Switch, Multistage switching network, Hypercube
Interconnection

51. Vi Inter processor arbitration: serial arbitration procedure, parallel
arbitration logic and dynamic arbitration algorithms

52. Vi Inter processor communication and synchronization, cache coherence

Unit — | — Basic structure of computers and Computer arithmetic

BASIC STRUCTURE OF COMPUTERS: Computer Types, Functional units, Basic
operational concepts, Bus structures, Software, Performance, multiprocessors and multi
computers. Data types, Complements, Data Representation. Fixed Point Representation.
Floating — Point Representation.

Error Detection codes.

COMPUTER ARITHMETIC: Addition and subtraction, multiplication Algorithms, Division
Algorithms, Floating point Arithmetic operations. Decimal Arithmetic unit, Decimal
Arithmetic operations.

1.1.1. Unit Objectives:
After reading this Unit, the reader should be able to understand:

- The definition of computer architecture, organization and computer hardware.

- The design aspects of computer hardware and software.

- Functions provided by a digital computer and functional units of a digital computer.

- Processes involved in executing a task, instruction types, connections between memory
and processor and data transfer mechanism between memory and processor.

- Processor registers and their functions interrupt and interrupt service routines.

- Bus, single bus, buffer registers, functions of system software and multiprogramming,
processor performance and performance parameters.

- Multi Processors and multi computers.

- Data types and their representation, number system and their representation.

- Using complements for subtraction

- Fixed point and floating point representation of signed numbers

- Error generation , error detection and error correction codes



1.1.2. Unit Outcomes:

- Student is able to differentiate the various computer types, hardware Vs software, RISC Vs
CISC.
Student is able to give an outline of functional parts of the computer.

Student is able to explain basic operational concept of a computer, bus structure & software.
Student is able to bring out the various performance parameters of a computer

Student is able to give representation of various data types in Binary Coded format.

Student is able to do arithmetic operations on signed, fixed point & floating point numbers
using complements.

Student is able to develop algorithms for arithmetic operations in fixed point & floating point
and decimal numbers and design hardware circuits for them.

Student is able to make error detection codes and build error detection circuits.



1.1.2.1. Lecturel
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lecture-1.docx

1.1.2.2. Lecture-2

lecture-2.pptx

1.1.2.3. Lecture-3

lecture-3'.pptx

1.1.2.4. Lecture-4

lecture-4. pptx

1.1.2.5. Lecture-5

Floatinpoint number representation:
Fixed point numbers represents integers and floating point numbers represent real numbers.
Numeric Format:

A number expressed in scientific notation has a sign, a fractionor significant( or mantissa) and an
expoenent.

Ex: The number is : -1234.5678

Scientific notation is : -1.2345678 * 10°. Here the sign is negative, the significant is 1.2345678 and
exponent is 3 and the base is 10. Computers use base as 2.

Disadvantages of Scientific notation:



Most of the numbers can be expressed in many different ways. Ex: -1.2345678%10%= -1234567.8* 107
= etc. Computers are more efficient and have much simpler hardware if each number is uniquely
represented.

Normalization as Solution to the problem:

The floating point number must be normalzed, that is, each number’s significant is a fraction with no
leading zeros. Thus the only valid floating point representation for - 1234.5678 is -.12345678* 10*.
Note IEEE 754 uses an exception for this rule.

Special cases:

The number zero has only zeros in its significand and can not be normaliuzed.For this reason a special
value is assigned to zero. Arithmetic algorithms must explicitly check for zero values and treat them as
special cases. +o0 and - == also have special representation and require special treatment.

NaN:

NaN means Not a Number. It represents the result of illegal operations, such as oo + o= or taking the
square root of a negative number. As with zero and infinity, NaN requires a special treatment in
floating point arithmetic algorithms.

A predefined format for computer storage of floating point number:
Each number is stored in it’s normal form.

Take the number: X =-1234.5678 ; That is X= Xs XX

Xsis the sign of X; Xgisit's significand and Xgis it's exponent

Since the radix point is located to the left of the most significant bit of the significand , the radix point
is not stored.Thus the value X =-1234.5678 would be stored as Xs -1, X = 12345678 and X; = 4

Biasing:

In the above representation foe exponent , there is no sign bit for exponent. We can use 2's
complement form but prevalent practice is to use biasing.

If Xg has 4 bits, then it can represent 16 items. That is the numbers from -8 to +7. To do this, a set bias
value is added to the actual exponent. The result is ten stored in Xg_For this the bias should be set to 8.

The smallest possible exponent, -8, is represented as -8+bias = -8+8=0 or 0000 in binary.

The largest possible exponent, +7, is represented as +7+ bias =+7+8=15= 1111 in binary. The
arithmetic algorithms must account for the bias when generating their results.

Characteristics of floating point numbers:



The characteristics are 1. Precision 2. Gap 3. Range
Precision:

It characterizes how precise a floating point value can be. It is defined as the number of bits in the
significand. The greater the number of bits in the significand, the greater is the CPU’s precision and the
more precise is it’s value. Many CPUs have 2 representations for floating point numbers. They are
called single precision and double precision here double precision has twice the number of bits.

Gap:

The gap is the difference between two adjacent values. It’s value depends on the value of the
exponent.

Take the number: X =.10111010 * 2°.

It’s adjacent values are : .10111001 * 2° and .10111011* 23,

Each number produce a gap of .00000001* 2°.

In general the gap for floating point value X can be expressed as 2!*ePrecision)

Range:

The range of a floating point representation is bounded by it’s smallest and largest possible values.
Overflow and underflow;

Overflow occurs when an operation produces a result that can not be stored in computers’s floating
point registers. Underflow occurs when an operation produces a result between zero and either the
positive or negative smallest possible value.

IEEE 754 Floating point standard:

This standard specifies 2 precision for floating point numbers which are called single precision and
double precision floating point representations.

Single Precision Format:

This format has 32 bits. 1 bit for sign; 8 bits for the exponent; 23 for the significand. The significand
also includes an implied 1 to the left of its radix point( except for special values and denormalized
numbers).
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Error Detection codes:

Information is stored as binary codes and are transmitted by serial or parallel communication. During
transmission noise is added to the signal and it may change binary bits in the code from 1 to 0, and vice
versa. An error detection code is a binary code that detects digital errors during transmission. The

detected errors can not be corrected but their presence is indicated.

Parity bit:

The most common error detection code used is the parity bit. A parity bit is an extra bit included with a
binary message to make the total number of 1’s either odd or even. If the message consists of n bits,
then the error detection code consists of n+1 bits. If the bit added to the message makes the sum of 1’s
odd in the error detection code, then the scheme is called odd-parity. If the sum of bits is even , the

scheme is called even parity scheme.

Message xyz | P(odd) | P(even) | Error detection Error detection
code, odd parity code, even parity
000 1 0 0001 0000
0 1 0010 0011
001
010 0 1 0100 0101
011 1 0 0111 0110
100 0 1 1000 1001
101 1 0 1011 1011
110 1 0 1101 1101
111 0 1 1110 1111




Parity Generator and Parity Checker:

X
Y
z
1@)
‘ > | -
a2, out /.
- odd Parity out
Parity Checker:
X
Y
Z L
A
Dut
B >
Ao
out

Parity out from generator > B

Error

Indication



The circuit arrangement checks the occurrence of error any odd number of times. An even number of
errors is not detected.

We note that P(even) function is the exclusive —OR x,y,z because it is equal to 1 when either one or all 3
of the variables are equal to 1. The P(odd) function is the complement of the P(even) function.

Assume at the sending end the message bits and odd parity bit is generated. The EX-OR gates generate
P(even ) function and to generate P(odd), the complement of P(even) is used.

The 4 bits transmitted has an odd number of I’s. If an error occurs during transmission, then the number
of 1’s become even. Hence parity checker checks for even parity.

1.1.2.6. Lecture-6
COMPUTER ARITHMETIC:

Addition, subtraction, multiplication are the four basic arithmetic operations. Using these operations
other arithmetic functions can be formulated and scientific problems can be solved by numerical
analysis methods.

Arithmetic Processor:

It is the part of a processor unit that executes arithmetic operations. The arithmetic instructions
definitions specify the data type that should be present in the registers used . The arithmetic instruction
may specify binary or decimal data and in each case the data may be in fixed-point or floating point
form.

Fixed point numbers may represent integers or fractions. The negative numbers may be in signed-
magnitude or signed- complement representation. The arithmetic processor is very simple if only a
binary fixed point add instruction is included. It would be more complicated if it includes all four
arithmetic operations for binary and decimal data in fixed and floating point representations.

Algorithm:

Algorithm can be defined as a finite number of well defined procedural steps to solve a problem.
Usually, an algorithm will contain a number of procedural steps which are dependent on results of
previous steps. A convenient method for presenting an algorithm is a flowchart which consists of
rectangular and diamond —shaped boxes. The computational steps are specified in the rectangular
boxes and the decision steps are indicated inside diamond-shaped boxes from which 2 or more
alternate path emerge.

Addition and Subtraction:

3 ways of representing negative fixed point binary numbers:



1.

Signed-magnitude representation---- used for the representation of mantissa for floating point
operations by most computers.

Signed-1's complement

Signed -2’s complement—Most computers use this form for performing arithmetic operation
with integers

Addition and subtraction algorithm for sighed-magnitude data

Let the magnitude of two numbers be A & B. When signed numbers are added or subtracted,
there are 4 different conditions to be considered for each addition and subtraction depending
on the sign of the numbers. The conditions are listed in the table below. The table shows the
operation to be performed with magnitude(addition or subtraction) are indicated for different

conditions.
Add Subtract magnitudes

SiNo | Operation | Magnitudes o B [When A<B | When AcB
1 (+A)+(+B) +(A+B)

2 (+A)+(-B) +(A-B) -(B-A) +(A-B)

3 (-A)+(+B) -(A-B) +(B-A) +(A-B)

4 (-A)+(-B) “(A+B)

5 (+A)-(+B) +(A-B) -(B-A) +(A-B)

6 (+A)-(-B) +(A+B)

7 (-A)-(+B) -(A+B)

8 (-A)-(B) (AB) +(BA) +(AB)

The last column is needed to prevent a negative zero. In other words, when two equal numbers
are subtracted, the result should be +0 not -0.

The algorithm for addition and subtraction ( from the table above):

Addition Algorithm:

When the signs of A and B are identical, add two magnitudes and attach the sign of A to the
result. When the sign of A and B are different, compare the magnitudes and subtract the
smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the



complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make
te sign of the result positive.
Subtraction algorithm:
When the signs of A and B are different, add two magnitudes and attach the sign of A to the
result. When the sign of A and B are identical, compare the magnitudes and subtract the
smaller number from the larger. Choose the sign of the result to be the same as A if A>B or the
complement of sign of A if A < B. If the two magnitudes are equal, subtract B from A and make
te sign of the result positive.
Hardware Implementation:
Let A and B are two registers that hold the numbers.
Asand Bs are 2, flip-flops that hold sign of corresponding numbers. The result is stored In A and
As .and thus they form Accumulator register.
We need to perform micro operation, A+ B and hence a parallel adder.
A comparator is needed to establish if A> B, A=B, or A<B.
We need to perform micro operations A-B and B-A and hence two parallel subtractor.
An exclusive OR gate can be used to determine the sign relationship, that is, equal or not.
Thus the hardware components required are a magnitude comparator, an adder, and two
subtractors.
Reduction of hardware by using different procedure:
1. We know subtraction can be done by complement and add.
2. The result of comparison can be determined from the end carry after the subtraction.
We find An adder and a complementer can do subtraction and comparison if 2’s
complement is used for subtraction.

Hardware forsigned-magnitude addition and subtraction:

l - Bregi‘sier‘y,“"_‘ i

Y
lAVF l [ (Camplexﬁemér }-<—r—-— M (Mode control)

)

gut Parallgl‘éédé; : .-}4_

‘r = Input carry

S
, A register 14—- Load sum

Figure 10-1 Hardware for signed-magnitude addition and subtraction.

AVF Add overflow flip flop. It hold the overflow bit when A & B are added.



Flip flop E—Output carry is transferred to E. It can be checked to see the relative magnitudes of the two
numbers.

A-B = A +( -B )= Adding a and 2’'s complement of B.

The A register provides other micro operations that may be needed when the sequence of steps in the
algorithm is specified.

The complementer Passes the contents of B or the complement of B to the Parallel Adder depending on
the state of the mode control B. It consists of EX-OR gates and the parallel adder consists of full adder
circuits. The M signal is also applied to the input carry of the adder.

When input carry M=0, the sum of full adder is A +B. When M=1,S=A+B’+1= A—B

Hardware algorithm:

Flow Chart for Add and Subtract operations:

The EX-OR gate provides 0 as output when the signs are identical. It is 1 when the signs are different.
A + B is computed for the following and the sum is stored in EA:

1. When the signs are same and addition operation is required.
2. When the signs are different and subtract operation is required.

The carry in E after addition indicates an overflow if it is 1 and it is transferred to AVF, the
addoverflow flag

A-B = A+ B’+1 computed for the following:
1. When the signs are different and addition operation is required.
2. When the signs are same and subtract operation is required.
No overflow can occur if the numbers are subtracted and hence AVF is cleared to Zero.

[ the subtraction of 2 n-digit un signed numbers M-N ( N#0) in base r can be done as follows:

1. Add minuend M to thee r's complement of the subtrahend N. This performs M-N +r.
2. IfM =N, The sum will produce an end carry rwhich is discarded, and what is left is the result M-N.

3. IfM<N, the sum does not produce an end carry and is equal to "~ N-M ), which is the r's complement of the sum and place a negative
sign in front.]
A 1in E indicates that A 2 B and the number in A is the correct result.
If this number in A is zero, the sign A; must be made positive to avoid a negative zero.
A 0in Eindicates that A< B. For this case it is necessary to take the 2’s complement of
the value in A.
In the algorithm shown in flow chart, it is assumed that A register has circuits for micro
operations complement and increment. Hence two complement of value in A is
obtained in 2, micro operations. In other paths of the flow chart, the sign of the result is
the same as the sign of A, so no change in Asis required.



However When A < B, the sign of the result is the complement of original sign of A.

Hence The complement of As stored in A,
Final Result: AcA
Flow chart for ADD and Subtract operations:

Subtract operation Add operation

Augend in 4
Addend in B

Minuend in A4
Subtrahend in B

=0 =)
A D B
Ay = By A, = B

END
(result is in 4 and 4;)

Figure 10-2 Flowchart for add and subtract operations.

Addition and Subtraction with signed-2’s complement Data.:
Arithmetic Addition:
This method does not need a comparison or subtraction but only addition and

complementation. The procedure is as below:

1.
2.

Represent the negative numbers in 2’s complement form.

Add the two numbers including the sign bits and discard any carry out of sign bit
position.

The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign
bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is
set to zero.

If the result is negative, take the 2’s complement of the result to get a correct
negative result.

Arithmetic Subtraction:

1.

Represent the negative numbers in 2’s complement form.



4,

Take the 2’s complement of the subtrahend including the sign bit and add it to the
minuend including the sign bit.

The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign
bit or if there is a no carry into sign bit and a carry out of sign bit. Otherwise it is
set to zero.

Discard the carry out of the sign bit position.

Note: A subtraction operation can be changed to an addition operation if the sign of the subtrahend is

changed.

BR Register

|

\Y

Complementer&Parallel Adder

Overflow

A

AC Register

Fig: Hardware for Signed 2/s complement for addition/ subtractioin.

Subtract Add
Minuend in AC Augend in AC
Subtrahend in BR Addend in BR
AC+AC +BR + 1 AC«AC +BR
Ve—overflow Ve—overflow
END END

Figure 10-4 Algorithm for adding and subtracting numbers in signed-2's
complement representation.
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1.1.2.7.

Lecture-7
Multiplication Algorithm:
Hardware implementation of multiplication of numbers in signed — magnitude form:

A adder is provided to add two binary numbers and the partial product is accumulated in a register.
Instead of shifting the multiplicand to the left, the partial product is shifted to the right, which result
in leaving the partial product and the multiplicand in the required relative positions.

3. When the corresponding bit of the multiplier is zero, there is no need to add all zeros to the partial
product, since it will not alter it’s value.

The hardware consists of 4 flipflops, 3 registers, one sequence counter, an adder and complementer.

Figure 10-5 Hardware for multiply operation.

’ B register | I Sequence counter (SC)

Complementer and
parallel adder

(rightmost bit)

0.
{
0 A register I-—b—l Q register _l

Q register&Q; flip flop : contains multiplier & Its sign

Sequence counter : It is set to a value equal to the number of bits in the multiplier

B Register& Bsflipflop : It contains the multiplicand, & its sign

A Register, E Flip flop . Initialized to ‘' 0’. Asdenotes sign of partial product

EA Register : hold partial product, with carry generated in addition being shifted to E .
Qn . Rightmost bit of the multiplier; AQ : will contain the final product.

As AQ represent product register, both As Qsrepresent the sign of the partial product or product.
The number to be multiplied are stores in memory as n bit sigh magnitude numbers and when
transferred to register msb bit go to sign flipflop and remaining n-1 bits go to registers. Hence SC is
initially set to n-1.

Let the lower order bit of the multiplier in Q,tested.

If it is 1, the multiplicand in B is added to the present partial product in A.

If itis a ‘0’, nothing is done. Register EAQ is then shifted once to the right to form the new partial
product. The sequence counter is decremented by 1 and it’s new value checked. If it is not equal to
zero, the process is repeated and a new partial product is formed. The process stops when SC = 0.



The final product is available in both A and Q, with A holding the most significant bits and Q holding the
least significant bits.

Flowchart for multiply operation:
Figure 10-6 Flowchart for multiply operation.

Multiply operation

Multiplicand in B
Multiplier in @

y

shr FAQ
SC <S¢ —1

{7

END
(product is in AQ)

Numerical Example for the above algorithm:

Multiplicand B= 10111 E A Q SC
Multiplier in Q 0 00000 10011 101
Q,=1;add B 10111

First Partial Product 0 10111

Shift Right EAQ 0 01011 11001 100
Q,=1;add B 10111

Second Partial Product 1 00010




Shift Right EAQ 0 10001 01100 011

Q, =0; Shift Right EAQ 0 01000 10110 010
Q, =0; Shift Right EAQ 0 00100 01011 001
Q,=1;add B 10111
Fifth Partial Product 0 11011
Shift Right EAQ 0 01101 10101 000

Final Product in AQ

AQ =0110110101

@j
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1.1.2.8. Lecture-8

Booth Multiplication Algorithm:
Multiplication of signed- 2’s complement integers:
This algorithm uses the following facts.

1. Astring of O’s in the multiplier requires no addition but just shifting.

2. Astring of 1’s in the multiplier from bit weight 2* to weight 2™ can be treated as 2*** - 2™
Example: Consider the binary number: 001110( +14 )

The number has a string of 1’s from 2% to 2. Hence k = 3 and m= 1. As other bits are 0’s, the
number can be represented as 2" - 2™ = 2*—2' = 16-2 = 14. Therefore the multiplication M * 14,
where M is the multiplicand and 14 the multiplier can be done as Mx 2*-M x 2"

This can be achieved by shifting binary multiplicand M four times to the left and subtracting M
shifted left once which is equal to (Mx 2*—M x 2%).

Shifting and addition/subtraction rules for multiplicand in Booth’s Algorithm:

1. The multiplicand is subtracted from the partial product upon encountering the first least
significand 1 in a string of I's in the multiplier.



2. The multiplicand is added to the partial product upon encountering the first O ( provided that
there was a previous 1)in a string of 0’s in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous
multiplier bit
Hardware Implementation of Booth Algorithm:

Figure 10-7 Hardware for Booth algorithm.

L BR register 7 L Sequence counter (SC)

Y

Complementer and
parallel adder

A

Qn Qn+ 1

1 {
L AC register }—»L OR register

Note: Sign bit is not separated from register. QR register contains the multiplier register and

Q.represent the least significant bit of the multiplier in QR. Q.1 is an extra flip flop appended to
QR to facilitate a double bit inspection of the multiplier.

AC register and appended Q,.; are initially cleared to 0.

Sequence counter Scis set to the number n which is equal to the number of bits of bits In the
multiplier.

Q,Q,.1 are to successive bits in the multiplier

Example for multiplication using Boot h algorithm:

Q,Qn+1 BR=1011,BR'+1 =01001 AC QR Qn+1 SC

10 Initial 00000 10011 0 101
Subtract BR 01001
01001

ashr 00100 11001 1 100

11 ashr 00010 01100 1 011
01 Add BR 10111
11001

ashr 11100 10110 0 010

00 ashr 11110 01011 0 001
10 Subtract BR 01001




00111
Ashr 00011 10101 1 000

Algorithm in flowchart for multiplication of sighed 2’s complement numbers.
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Figure 10-8 Booth algorithm for multiplication of signed-2’s complement
numbers.

Array Multiplier:
2 -bit by 2- bit Array Multiplier:

Multiplicand bits are b; and by .Multiplier bits are a; and ag The first partial product is obtained
by multiplying agby b; by. The bit multiplication is implemented by AND gate. First partial
product is made by two AND gates. Second partial product is made by two AND gates. The two
partial products are added with two half adder circuits.




Figure 10-9 2-bit by 2-bit array multiplier.
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Combinational circuit binary multiplier:

A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there bits in the
multiplier. The binary output in each level of the AND gates is added in parallel with the partial product
of the previous level to form a ne partial product. The last level produces the product. For j multiplier
and k multiplicand bits, we need j*k AND Gates and (j-1)*k bit adders to ptoduce a product of j+k bits.

4- bit by 3-bit Array Multiplier:
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Figure 10-10 4-bit by 3-bit array mulrtiplier.
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1.1.2.9.

Lecture-9

Division Algorithms:

Division Process for division of fixed point binary number in signed —magnitude representation:

Divisor:

Figure 10-11 Example of binary division.

11010 Quotient = 0

B =10001 )Ol 11000000 Dividend = A

01110 5 bits of A < B, quotient has 5 bits
011100 6 bitsof A = B .
-10001 Shift right B and subtract; enter 1 in Q
-010110 7 bits of remainder = B -
--10001 Shift right B and subtract; enter 1 in Q@
--001010 Remainder < B; enter O in Q; shift right B
---010100 Remainder 2 B ;
----10001 Shift right B and subtract; enter 1 in Q

----000110 Remainder < B; enter 0 in Q
————— 00110 Final remainder

Let dividend A consists of 10 bits and divisor B consists of 5 bits.

Compare the 5 most significant bits of the dividend with that of divisor.

If the 5 bit number is smaller than divisor B, then take 6 bits of the dividend and compare with the 5 bit divisor.
The 6 bit number is greater than divisor B. Hence place a 1 for the quotient bit in the sixth position above the
dividend. Shift the divisor once to the right and subtracted from the dividend. The difference is called partial
remainder.

4. Repeat the process with the partial remainder and divisor. If the partial remainder is equal or greater than or equal to
the divisor, the quotient bit is equal to 1.The divisor is then shifted right and subtracted from the partial remainder. If
the partial remainder is small than the divisor, then the quotient bit is zero and no subtraction is needed. The divisor
is shifted once to the right in any case,.

Hardware Implementation of division for signed magnitude fixed point numbers:

To implement division using a digital computer, the process is changed slightly for convenience.

1.

o v e w

Instead of shifting the divisor to the right, the dividend or the partial remainder, is shifted to the left so as to
leave the two numbers in the required relative position.

Subtraction may be achieved by adding A (dividend)to the 2’s complement of B(divisor). The information about
the relative magnitude is then available from end carry.

Register EAQ is now shifted to the left with 0 inserted into Q,, and the previous value of E is lost..

The divisor is stored in B register and the double length dividend is stored in registers A and Q.

The dividend is shifted to the left and the divisor is subtracted by adding it's 2’s complement value.

If E= 1, it signifies that A > B.A quotient bit is inserted into Q,and the partial remainder is shifted to the left to
repeat the process.

If E =0, it signifies that A < B so the quotient Q, remains O( inserted during the shift). The value of B is then
added to restore the partial remainder in A to its previous value. The partial remainder is shifted to the left and
the process is repeated again until all 5 quotient bits are formed.

At the end Q contains the quotient and A the remainder. If the sign of dividend and divisor are alike, the quotient
is positive and if unalike, it is negative. The sign of the remainder is the same as dividend.
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Hardware for implementing division of fixed point signed- Magnitude Numbers

Example of Binary division with digital hardware: Divisor B=10001, B +1 =01111
E A Q SC

Dividend: 01110 00000 5
Shl EAQ 11100 00000

Add, B +1 01111

E=1 1 01011

SetQ,=1 1 01011 00001 4
Shl EAQ 0 10110 00010

Add, B +1 01111

E=1 1 00101

SetQ,=1 1 00101 00011 3
Shl EAQ 0 01010 00110

Add , B +1 01111

E=0; Leave Q,= 0 11001 00110

Add B 10001




Restore remainder 1 01010 2
Shl EAQ 0 10100 01100

Add , B +1 01111

E=1 1 00011

SetQ,=1 1 00011 01101 1
Shl EAQ 0 00110 11010

Add , B +1 01111

E=0; Leave Q=0 0 10101 11010

Add B 10001

Restore remainder 1 00110 11010 0
Neglect E

Remainder in A 00110 11010
Quotientin Q

Divide overflow:
When the dividend is twice as long as the divisor, the condition for overflow can be stated as follows:

A divide-overflow condition occurs if the higher order half bits of the dividend constitute a number
greater than or equal to the divisor. If the divisor is zero, then the dividend will definitely be greater
than or equal to divisor. Hence divide overflow condition occurs and hence the divide-overflow —flip flop
will be set. Let the flip flop be called DVF.

Handling DVF:

1. Check if DVF is set after each divide instruction. If DVF is set, then the program branches to a
subroutine that takes corrective measures such as rescaling the data to avoid overflow.

2. Aninterrupt is generated if DVF is set. The interrupt causes the processor to suspend the
current program and branch to interrupt service routine to take corrective measure. The most



common corrective measure is to remove the program and type an error message that explains

the reasons.
3. The divide overflow can be handled very simply if the numbers are represented in floating point

representation.

Flow chart for divide operation:

Figure 10-13 Flowchart for divide operation.

Divide operation

L

Dividend in AQ
Divisor in B

Divide magnitudes

SC<n—1 shl EAQ

A=B \/ A<B

EA<A+B EA<A+B
DVF <1 DVE <0

(Quotient is in Q
remainder is in 4)

(Divide overflow)

Assumption:
Operands are transferred from memory to registers as n bit words.n-1 bit form magnitude and 1 bit

shows the sign.



A divide overflow condition is tested by subtracting the divisor in B from half of the bits of dividend
stored in A. If vA 2 B, the DVF is set and the operation is terminated prematurely. If A < B, no DVF occurs
and so the value of dividend is restored by adding B to A.

The division of the magnitudes starts by shifting the dividend in AQ to the left, with the higher order bit
shifted into E. If the bit shifted into E is 1, we know that EA is greater than B because EA consists of a 1
followed by n-1 bits while B consists of only n-1 bits. In this case, B must be subtracted from EA and 1
inserted into Q, for the quotient bit. Since register A is missing the higher order bit of the dividend
(which is in E), it’s value is EA — 2"" . Adding to this value the 2’s complement of B results in

(EA-2"") + (2" =B )= E-B. The carry from the addition is not transferred to E if we want E to remain a 1.

If the shift left operation inserts a zero into E, the divisor is subtracted by adding it’s 2’s complement
value and the carry is transferred into E. If E = 1, it signifies that A2 B and hence Q, issetto 1. IFE =0, it
signifies that A < B and the original number is restored by adding B to A. In the latter case we leave a 0 in
Q,, (0 was inserted during the shift).

This process is repeated again with register A holding the partial remainder. After n-1 times, the
guotient magnitude is formed in the register Q and the remainder is found in register A.
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10-5 Floating-Point Arithmetic Operations

Many high-level programming languages have a facility for specifying floating-
point numbers. The most common way is to specify them by a real declaration
statement as opposed to fixed-point numbers, which are specified by an integer
declaration statement. Any computer that has a compiler for such high-level
programming language must have a provision for handling floating-point
arithmetic operations. The operations are quite often included in the internal
hardware. If no hardware is available for the operations, the compiler must be
designed with a package of floating-point software subroutines. Although the
hardware method is more expensive, it is so much more efficient than the
software method that floating-point hardware is included iriqmost computers
and is omitted only in very small ones.

Basic Considerations

Floating-point representation of data was introduced in Sec. 3-4. A floating-
point number in computer registers consists of two parts: a mantissa m and an
exponent e. The two parts represent a number obtained from multiplying m
times a radix r raised to the value of e; thus

m o’

The mantissa may be a fraction or an integer. The location of the radix point
and the value of the radix r are assumed and are not included in the registers.
For example, assume a fraction representation and a radix 10. The decimal
number 537.25 is represented in a register with m = 53725 and e = 3 and is
interpreted to represent the floating-point number

.53725 x 10°




SECTION 10-5 Floating-Point Arithmetic Operations 355

A floating-point number is normalized if the most significant digit of the
mantissa is nonzero. In this way the mantissa contains the maximum possible
number of significant digits. A zero cannot be normalized because it does not
have a nonzero digit. It is represented in floating-point by all 0s in the mantissa
and exponent.

Floating-point representation increases the range of numbers that can be
accommodated in a given register. Consider a computer with 48-bit words.
Since one bit must be reserved for the sign, the range of fixed-point integer
numbers will be +(2¥ — 1), which is approximately +10". The 48 bits can be
used to represent a floating-point number with 36 bits for the mantissa and 12
bits for the exponent. Assuming fraction representation for the mantissa and
taking the two sign bits into consideration, the range of numbers that can be
accommodated is ’

(1~ 275 % 2%

This number is derived from a fraction that contains 35 1’s, an exponent of 11
bits (excluding its sign), and the fact that 2" — 1 = 2047. The largest number
that can be accommodated is approximately 10°”°, which is a very large number.
The mantissa can accommodate 35 bits (excluding the sign) and if considered
as an integer it can store a number as large as (2* — 1). This is approximately
equal to 10", which is equivalent to a decimal number of 10 digits.
Computers with shorter word lengths use two or more words to represent
a floating-point number. An 8-bit microcomputer may use four words to
represent one floating-point number. One word of 8 bits is reserved for the
exponent and the 24 bits of the other three words are used for the mantissa.
Arithmetic operations with floating-point numbers are more complicated
than with fixed-point numbers and their execution takes longer and requires
more complex hardware. Adding or subtracting two numbers requires first an
alignment of the radix point since the exponent parts must be made equal
before adding or subtracting the mantissas. The alignment is done by shifting
one mantissa while its exponent is adjusted until it is equal to the other
exponent. Consider the sum of the following floating-point numbers:

.5372400 x 10°
+ .1580000 x 107"

It is necessary that the two exponents be equal before the mantissas can be
added. We can either shift the first number three positions to the left, or shift
the second number three positions to the right. When the mantissas are stored
in registers, shifting to the left causes a loss of most significant digits. Shifting
to the right causes a loss of least significant digits. The second method is
preferable because it only reduces the accuracy, while the first method may
cause an error. The usual alignment procedure is to shift the mantissa that has




the smaller exponent to the right by a number of places equal to the difference
between the exponents. After this is done, the mantissas can be added:

.5372400 x 107
+.0001580 x 10?
.5373980 x 107

When two normalized mantissas are added, the sum may contain an
overflow digit. An overflow can be corrected easily by shifting the sum once
to the right and incrementing the exponent. When two numbers are sub-
tracted, the result may contain most significant zeros as shown in the following
example:

.56780 x 10°
—.56430 x 10°
.00350 x 10°

A floating-point number that has a 0 in the most significant position of the
mantissa is said to have an underflow. To normalize a number that contains an
underflow, it is necessary to shift the mantissa to the left and decrement the
exponent until a nonzero digit appears in the first position. In the example
above, it is necessary to shift left twice to obtain .35000 x 10°. In most comput-
ers, anormalization procedure is performed after each operation to ensure that
all results are in a normalized form.

Floating-point multiplication and division do not require an alignment of
the mantissas. The product can be formed by multiplying the two mantissas
and adding the exponents. Division is accomplished by dividing the mantissas
and subtracting the exponents.

The operations performed with the mantissas are the same as in fixed-
point numbers, so the two can share the same registers and circuits. The
operations performed with the exponents are compare and increment (for
aligning the mantissas), add and subtract (for multiplication and division), and
decrement (to normalize the result). The exponent may be represented in any
one of the three representations: signed-magnitude, signed-2’s complement,
or signed-1's complement.

A fourth representation employed in many computers is known as a
biased exponent. In this representation, the sign bit is removed from being a
separate entity. The bias is a positive number that is added to each exponent
as the floating-point number is formed, so that internally all exponents are
positive. The following example may clarify this type of representation. Con-
sider an exponent that ranges from —50 to 49. Internally, it is represented by
two digits (without a sign) by adding to it a bias of 50. The exponent register
contains the number e + 50, where e is the actual exponent. This way, the
exponents are represented in registers as positive numbers in the range of 00




to 99. Positive exponents in registers have the range of numbers from 99 to 50.
The subtraction of 50 gives the positive values from 49 to 0. Negative exponents
are represented in registers in the range from 49 to 00. The subtraction of 50
gives the negative values in the range of —1 to —50.

The advantage of biased exponents is that they contain only positive
numbers. It is then simpler to compare their relative magnitude without being
concerned with their signs. As a consequence, a magnitude comparator can be
used to compare their relative magnitude during the alignment of the man-
tissa. Another advantage is that the smallest possible biased exponent contains
all zeros. The floating-point representation of zero is then a zero mantissa and
the smallest possible exponent.

In the examples above, we used decimal numbers to demonstrate some
of the concepts that must be understood when dealing with floating-point
numbers. Obviously, the same concepts apply to binary numbers as well. The
algorithms developed in this section are for binary numbers. Decimal computer
arithmetic is discussed in the next section.

Register Configuration

The register configuration for floating-point operations is quite similar to the
layout for fixed-point operations. As a general rule, the same registers and
adder used for fixed-point arithmetic are used for processing the mantissas.
The difference lies in the way the exponents are handled.

The register organization for floating-point operations is shown in Fig.
10-14. There are three registers, BR, AC, and QR. Each register is subdivided
into two parts. The mantissa part has the same uppercase letter symbols as in
fixed-point representation. The exponent part uses the corresponding lower-
case letter symbol.

It is assumed that each floating-point number has a mantissa in signed-
magnitude representation and a biased exponent. Thus the AC has a mantissa

Figure 10-14 Registers for floating-point arithmetic operations.

B, B b BR
Parallel-adder
E Parallel-adder and comparator
TR A a AC

Qs Q q QR




whose sign is in A, and a magnitude that is in A. The exponent is in the part
of the register denoted by the lowercase letter symbol 2. The diagram shows
explicitly the most significant bit of A, labeled by A;. The bit in this position
must be a 1 for the number to be normalized. Note that the symbol AC
represents the entire register, that is, the concatenation of A;, A, and a.

Similarly, register BR is subdivided into B,, B, and b, and QR into Q;, Q,
and q. A parallel-adder adds the two mantissas and transfers the sum into A
and the carry into E. A separate parallel-adder is used for the exponents. Since
the exponents are biased, they do not have a distinct sign bit but are repre-
sented as a biased positive quantity. It is assumed that the floating-point
numbers are so large that the chance of an exponent overflow is very remote,
and for this reason the exponent overflow will be neglected. The exponents are
also connected to a magnitude comparator that provides three binary outputs
to indicate their relative magnitude.

The number in the mantissa will be taken as a fraction, so the binary point
is assumed to reside to the left of the magnitude part. Integer representation
for floating-point causes certain scaling problems during multiplication and
division. To avoid these problems, we adopt a fraction representation.

The numbers in the registers are assumed to be initially normalized. After
each arithmetic operation, the result will be normalized. Thus all floating-point
operands coming from and going to the memory unit are always normalized.

Addition and Subtraction

During addition or subtraction, the two floating-point operands are in AC and
BR. The sum or difference is formed in the AC. The algorithm can be divided
into four consecutive parts:

1. Check for zeros.

2. Align the mantissas.

3. Add or subtract the mantissas.
4. Normalize the result.

A floating-point number that is zero cannot be normalized. If this number
is used during the computation, the result may also be zero. Instead of check-
ing for zeros during the normalization process we check for zeros at the
beginning and terminate the process if necessary. The alignment of the man-
tissas must be carried out prior to their operation. After the mantissas are
added or subtracted, the result may be unnormalized. The normalization
procedure ensures that the result is normalized prior to its transfer to memory.

The flowchart for adding or subtracting two floating-point binary num-
bers is shown in Fig. 10-15. If BR is equal to zero, the operation is terminated,
with the value in the AC being the result. If AC is equal to zero, we transfer
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subtraction
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Figure 10-15 Addition and subtraction of floating-point numbers.




the content of BR into AC and also complement its sign if the numbers are to
be subtracted. If neither number is equal to zero, we proceed to align the
mantissas.

The magnitude comparator attached to exponents a and b provides three
outputs that indicate their relative magnitude. If the two exponents are equal,
we go to perform the arithmetic operation. If the exponents are not equal, the
mantissa having the smaller exponent is shifted to the right and its exponent
incremented. This process is repeated until the two exponents are equal.

The addition and subtraction of the two mantissas is identical to the
fixed-point addition and subtraction algorithm presented in Fig. 10-2. The
magnitude part is added or subtracted depending on the operation and the
signs of the two mantissas. If an overflow occurs when the magnitudes are
added, it is transferred into flip-flop E. If E is equal to 1, the bit is transferred
into A; and all other bits of A are shifted right. The exponent must be incre-
mented to maintain the correct number. No underflow may occur in this case
because the original mantissa that was not shifted during the alignment was
already in a normalized position.

If the magnitudes were subtracted, the result may be zero or may have
an underflow. If the mantissa is zero, the entire floating-point number in the
AC is made zero. Otherwise, the mantissa must have at least one bit that is
equal to 1. The mantissa has an underflow if the most significant bit in position
A,is 0. In that case, the mantissa is shifted left and the exponent decremented.
The bit in A, is checked again and the process is repeated until it is equal to
1. When A, = 1, the mantissa is normalized and the operation is completed.

Multiplication

The multiplication of two floating-point numbers requires that we multiply the
mantissas and add the exponents. No comparison of exponents or alignment
of mantissas is necessary. The multiplication of the mantissas is performed in
the same way as in fixed-point to provide a double-precision product. The
double-precision answer is used in fixed-point numbers to increase the accu-
racy of the product. In floating-point, the range of a single-precision mantissa
combined with the exponent is usually accurate enough so that only single-
precision numbers are maintained. Thus the half most significant bits of the
mantissa product and the exponent will be taken together to form a single-
precision floating-point product.
The multiplication algorithm can be subdivided into four parts:

1. Check for zeros.

2. Add the exponents.

3. Multiply the mantissas.
4. Normalize the product.




Steps 2 and 3 can be done simultaneously if separate adders are available for
the mantissas and exponents.

The flowchart for floating-point multiplication is shown in Fig. 10-16. The
two operands are checked to determine if they contain a zero. If either operand
is equal to zero, the product in the AC is set to zero and the operation is

Figure 10-16 Multiplication of floating-point numbers.

Multiply

l

Multiplicand in BR
Multiplier in QR

A
.
=

AC+0

a < a — bias

Y
Multiply mantissa
as in Fig. 10-6

shl AQ
a<a-—1

|

END '
(product is in AC)




dividend alignment

terminated. If neither of the operands is equal to zero, the process continues
with the exponent addition.

The exponent of the multiplier is in g and the adder is between exponents
a and b. It is necessary to transfer the exponents from g to a, add the two
exponents, and transfer the sum into a. Since both exponents are biased by the
addition of a constant, the exponent sum will have double this bias. The correct
biased exponent for the product is obtained by subtracting the bias number
from the sum.

The multiplication of the mantissas is done as in the fixed-point case with
the product residing in A and Q. Overflow cannot occur during multiplication,
so there is no need to check for it.

The product may have an underflow, so the most significant bit in A is
checked. If it is a 1, the product is already normalized. If it is a 0, the mantissa
in AQ is shifted left and the exponent decremented. Note that only one
normalization shift is necessary. The multiplier and multiplicand were origi-
nally normalized and contained fractions. The smallest normalized operand is
0.1, so the smallest possible product is 0.01. Therefore, only one leading zero
may occur.

Although the low-order half of the mantissa is in Q, we do not use it for
the floating-point product. Only the value in the AC is taken as the product.

Division

Floating-point division requires that the exponents be subtracted and the
mantissas divided. The mantissa division is done as in fixed-point except that
the dividend has a single-precision mantissa that is placed in the AC. Remem-
ber that the mantissa dividend is a fraction and not an integer. For integer
representation, a single-precision dividend must be placed in register Q and
register A must be cleared. The zeros in A are to the left of the binary point
and have no significance. In fraction representation, a single-precision divi-
dend is placed in register A and register Q is cleared. The zeros in Q are to the
right of the binary point and have no significance.

The check for divide-overflow is the same as in fixed-point representa-
tion. However, with floating-point numbers the divide-overflow imposes no
problems. If the dividend is greater than or equal to the divisor, the dividend
fraction is shifted to the right and its exponent incremented by 1. For normal-
ized operands this is a sufficient operation to ensure that no mantissa divide-
overflow will occur. The operation above is referred to as a dividend alignment .

The division of two normalized floating-point numbers will always result
in a normalized quotient provided that a dividend alignment is carried out
before the division. Therefore, unlike the other operations, the quotient ob-
tained after the division does not require a normalization.

The division algorithm can be subdivided into five parts:

1. Check for zeros.
2. Initialize registers and evaluate the sign.




3. Align the dividend.
4. Subtract the exponents.
5. Divide the mantissas.

The flowchart for floating-point division is shown in Fig. 10-17. The two
operands are checked for zero. If the divisor is zero, it indicates an attempt to
divide by zero, which is an illegal operation. The operation is terminated with
an error message. An alternative procedure would be to set the quotient in QR
to the most positive number possible (if the dividend is positive) or to the most
negative possible (if the dividend is negative). If the dividend in AC is zero, the
quotient in QR is made zero and the operation terminates.

If the operands are not zero, we proceed to determine the sign of the
quotient and store it in Q. The sign of the dividend in A; is left unchanged to
be the sign of the remainder. The Q register is cleared and the sequence counter
SC is set to a number equal to the number of bits in the quotient.

The dividend alignment is similar to the divide-overflow check in the
fixed-point operation. The proper alignment requires that the fraction divi-
dend be smaller than the divisor. The two fractions are compared by a subtrac-
tion test. The carry in E determines their relative magnitude. The dividend
fraction is restored to its original value by adding the divisor. If A = B, it is
necessary to shift A once to the right and increment the dividend exponent.
Since both operands are normalized, this alignment ensures that A < B.

Next, the divisor exponent is subtracted from the dividend exponent.
Since both exponents were originally biased, the subtraction operation gives
the difference without the bias. The bias is then added and the result trans-
ferred into g because the quotient is formed in QR.

The magnitudes of the mantissas are divided as in the fixed-point case.
After the operation, the mantissa quotient resides in Q and the remainder in
A. The floating-point quotient is already normalized and resides in QR. The
exponent of the remainder should be the same as the exponent of the dividend.
The binary point for the remainder mantissa lies (n — 1) positions to the left
of A;. The remainder can be converted to a normalized fraction by subtracting
n — 1 from the dividend exponent and by shift and decrement until the bit in
A, is equal to 1. This is not shown in the flow chart and is left as an exercise.
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1.1.2.11 Lecture-11

10-6 Decimal Arithmetic Unit

The user of a computer prepares data with decimal numbers and receives
results in decimal form. A CPU with an arithmetic logic unit can perform
arithmetic microoperations with binary data. To perform arithmetic operations
with decimal data, it is necessary to convert the input decimal numbers to
binary, to perform all calculations with binary numbers, and to convert the
results into decimal. This may be an efficient method in applications requiring
a large number of calculations and a relatively smaller amount of input and




Divisor in BR
Dividend in AC

L 4

Divide by
zero

A<B

A<~A+B

Divide magnitude of
mantissas as in Fig. 10-13

END
(Quotient is in OR)

Figure 10-17 Division of floating-point numbers.




output data. When the application calls for a large amount of input-output and
a relatively smaller number of arithmetic calculations, it becomes convenient
to do the internal arithmetic directly with the decimal numbers. Computers
capable of performing decimal arithmetic must store the decimal data in binary-
coded form. The decimal numbers are then applied to a decimal arithmetic unit
capable of executing decimal arithmetic microoperations.

Electronic calculators invariably use an internal decimal arithmetic unit
since inputs and outputs are frequent. There does not seem to be a reason for
converting the keyboard input numbers to binary and again converting the
displayed results to decimal, since this process requires special circuits and also
takes a longer time to execute. Many computers have hardware for arithmetic
calculations with both binary and decimal data. Users can specify by pro-
grammed instructions whether they want the computer to perform calculations
with binary or decimal data.

A decimal arithmetic unit is a digital function that performs decimal
microoperations. It can add or subtract decimal numbers, usually by forming
the 9’s or 10’s complement of the subtrahend. The unit accepts coded decimal
numbers and generates results in the same adopted binary code. A single-stage
decimal arithmetic unit consists of nine binary input variables and five binary
output variables, since a minimum of four bits is required to represent each
coded decimal digit. Each stage must have four inputs for the augend digit,
four inputs for the addend digit, and an input-carry. The outputs include four
terminals for the sum digit and one for the output-carry. Of course, there is
a wide variety of possible circuit configurations dependent on the code used
to represent the decimal digits.

BCD Adder

Consider the arithmetic addition of two decimal digits in BCD, together with
a possible carry from a previous stage. Since each input digit does not exceed
9, the output sum cannot be greaterthan 9 + 9 + 1 = 19, the 1 in the sum being
an input-carry. Suppose that we apply two BCD digits to a 4-bit binary adder.
The adder will form the sum in binary and produce a result that may range from
0 to 19. These binary numbers are listed in Table 10-4 and are labeled by
symbols K, Zg, Z4, Z,, and Z,. K is the carry and the subscripts under the letter
Z represent the weights 8, 4, 2, and 1 that can be assigned to the four bits in
the BCD code. The first column in the table lists the binary sums as they appear
in the outputs of a 4-bit binary adder. The output sum of two decimal numbers
must be represented in BCD and should appear in the form listed in the second
column of the table. The problem is to find a simple rule by which the binary
number in the first column can be converted to the correct BCD digit represen-
tation of the number in the second column.

In examining the contents of the table, it is apparent that when the binary
sum is equal to or less than 1001, the corresponding BCD number is identical



TABLE 10-4 Derivation of BCD Adder

Binary Sum BCD Sum
K Zs Z4 Zz Z] ( Ss 54 Sz 51 Decimal
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 il 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 T
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9
0 1 0 1 0 1 0 0 0 0 10
0 1 0 1. 1 1 0 0 0 1 11
0 ik 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1 0 0 1 1 13
0 g 1 ] 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
1 0 0 1 1 ik 1 0 0 1 19

and therefore no conversion is needed. When the binary sum is greater than
1001, we obtain a nonvalid BCD representation. The addition of binary 6 (0110)
to the binary sum converts it to the correct BCD representation and also
produces an output-carry as required.

One method of adding decimal numbers in BCD would be to employ one
4-bit binary adder and perform the arithmetic operation one digit at a time. The
low-order pair of BCD digits is first added to produce a binary sum. If the result
is equal or greater than 1010, it is corrected by adding 0110 to the binary sum.
This second operation will automatically produce an output-carry for the next
pair of significant digits. The next higher-order pair of digits, together with the
input-carry, is then added to produce their binary sum. If this result is equal
to or greater than 1010, it is corrected by adding 0110. The procedure is
repeated until all decimal digits are added.

The logic circuit that detects the necessary correction can be derived from
the table entries. It is obvious that a correction is needed when the binary sum
has an output carry K = 1. The other six combinations from 1010 to 1111 that
need a correction have a 1 in position Zg. To distinguish them from binary 1000
and 1001 which also have a 1 in position Zg, we specify further that either Z,
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or Z, must have a 1. The condition for a correction and an output-carry can be
expressed by the Boolean function

€ =K+ZBZ4+2322

When C = 1, it is necessary to add 0110 to the binary sum and provide an
output-carry for the next stage.

A BCD adder is a circuit that adds two BCD digits in parallel and produces
a sum digit also in BCD. A BCD adder must include the correction logic in its
internal construction. To add 0110 to the binary sum, we use a second 4-bit
binary adder as shown in Fig. 10-18. The two decimal digits, together with the
input-carry, are first added in the top 4-bit binary adder to produce the binary
sum. When the output-carry is equal to 0, nothing is added to the binary sum.
When it is equal to 1, binary 0110 is added to the binary sum through the
bottom 4-bit binary adder. The output-carry generated from the bottom binary
adder may be ignored, since it supplies information already available in the
output-carry terminal.

Figure 10-18 Block diagram of BCD adder.
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A decimal parallel-adder that adds n decimal digits needs n BCD adder
stages with the output-carry from one stage connected to the input-carry of the
next-higher-order stage. To achieve shorter propagation delays, BCD adders
include the necessary circuits for carry look-ahead. Furthermore, the adder
circuit for the correction does not need all four full-adders, and this circuit can
be optimized.

BCD Subtraction

A straight subtraction of two decimal numbers will require a subtractor circuit
that will be somewhat different from a BCD adder. It is more economical to
perform the subtraction by taking the 9's or 10’s complement of the subtrahend
and adding it to the minuend. Since the BCD is not a self-complementing code,
the 9's complement cannot be obtained by complementing each bit in the code.
It must be formed by a circuit that subtracts each BCD digit from 9.

The 9’s complement of a decimal digit represented in BCD may be ob-
tained by complementing the bits in the coded representation of the digit
provided a correction is included. There are two possible correction methods.
In the first method, binary 1010 (decimal 10) is added to each complemented
digit and the carry discarded after each addition. In the second method, binary
0110 (decimal 6) is added before the digit is complemented. As a numerical
illustration, the 9’s complement of BCD 0111 (decimal 7) is computed by first
complementing each bit to obtain 1000. Adding binary 1010 and discarding the
carry, we obtain 0010 (decimal 2). By the second method, we add 0110 to 0111
to obtain 1101. Complementing each bit, we obtain the required result of 0010.
Complementing each bit of a 4-bit binary number N is identical to the subtrac-
tion of the number from 1111 (decimal 15). Adding the binary equivalent of
decimal 10 gives 15 — N + 10 = 9 — N + 16. But 16 signifies the carry that is
discarded, so the result is 9 — N as required. Adding the binary equivalent of
decimal 6 and then complementing gives 15 — (N + 6) =9 — N as required.

The 9’s complement of a BCD digit can also be obtained through a
combinational circuit. When this circuit is attached to a BCD adder, the result
is a BCD adder/subtractor. Let the subtrahend (or addend) digit be denoted by
the four binary variables Bg, By, B,, and B,. Let M be a mode bit that controls
the add/subtract operation. When M = 0, the two digits are added; when
M = 1, the digits are subtracted. Let the binary variables xg, x4, x,, and x; be
the outputs of the 9’s complementer circuit. By an examination of the truth
table for the circuit, it may be observed (see Prob. 10-30) that B, should always
be complemented; B, is always the same in the 9's complement as in the original
digit; x, is 1 when the exclusive-OR of B, and By is 1; and x; is 1 when
Bg B4 B, = 000. The Boolean functions for the 9’s complementer circuit are

X1 = BIM’ + B{M

X2=Bz



X4 = B4M' = (BABZ =t B4B£)M
xg = BsM' + BgBiB;M

From these equations we see that x = B when M = 0. When M =1, the x
outputs produce the 9's complement of B.

One stage of a decimal arithmetic unit that can add or subtract two BCD
digits is shown in Fig. 10-19. It consists of a BCD adder and a 9's complementer.
The mode M controls the operation of the unit. With M = 0, the 5 outputs form
the sum of A and B. With M = 1, the S outputs form the sum of A plus the
9’'s complement of B. For numbers with decimal digits we need n such stages.
The output carry Ci;; from one stage must be connected to the input carry C;
of the next-higher-order stage. The best way to subtract the two decimal
numbers is to let M = 1 and apply a 1 to the input carry C; of the first stage.
The outputs will form the sum of A plus the 10’s complement of B, which
is equivalent to a subtraction operation if the carry-out of the last stage is
discarded.

fiw =

lecture-11.docx

1.1.2.12 Lecture-12



flowcharts can be used for both types of data provided that we interpret the
microoperation symbols properly. Decimal numbers in BCID are stored in
computer registers in groups of four bits. Each 4-bit group represents a decimal
digit and must be taken as a unit when performing decimal microoperations.
For convenience,

we will use the same symbols for binary and decimal
arithmetic microoperations but give them a different interpretation. As shown

in Table 10-5, a bar over the register letter symbol denotes the 9's complement
of the decimal number stored in the register. Adding 1 to the 9's complement
produces the 10's complement. Thus, for decimal numbers, the symbol
M <A + B + 1 denotes a transfer of the decimal sum formed by adding the
original content A to the 10’s complement of B. The use of identical symbols
for the 9°s complement and the 1’s complement may be confusing if both types
of data are employed in the same system. If this is the case, it may be better
to adopt a different s

ymbol for the 9's complement. If only one type of data
is being considered, the symbol would apply to the ty

pe of data used.
Incrementing or decrementing a register is the same for binary and
decimal except for the number of states that the register is allowed to have. A
binary counter goes through 16 states, from 0000 to 1111, when incremented.
A decimal counter goes through 10 states froxmm 0000 to 1001 and back to 0000,
since 9 is the last count. Similarly, a binary counter sequences from 1111 to 0000
when decremented. A decimal counter goes from 1001 to 000O0.

A decimal shift right or left is preceded by the letter d to indicate a shift
over the four bits that hold the decimal digits.

As a numerical illustration
consider a register A holding decimal 7860 in BCD. The bit pattern of the 12
flip-flops is
o111 1000 0110 0000

The microoperation dshr A shifts the decimal number one digit to the right to
give O786. This shift is over the four bits and changes the content of the register
into

0000 o111 1000 0110

TABLE 10-5 Decimal Arithmertic Microoperation Symbols

Symbolic Designation

IDescription
A <A + B

Add decimal numbers and transfer sum into A

9’s complement of B
A<—A + B + 1 Content of A plus 10's complement of B into A
QO =— ¢ + 1 Increment BCD number in O
dshr A Decimal shift-right register A
dshl A Decimal shift-left register A




Addition and Subtraction

The algorithm for addition and subtraction of binary signed-magnitude num-
bers applies also to decimal signed-magnitude numbers provided that we
interpret the microoperation symbols in the proper manner. Similarly, the
algorithm for binary signed-2’s complement numbers applies to decimal
signed-10's complement numbers. The binary data must employ a binary
adder and a complementer. The decimal data must employ a decimal arith-
metic unit capable of adding two BCD numbers and forming the 9's comple-
ment of the subtrahend as shown in Fig. 10-19.

Decimal data can be added in three different ways, as shown in Fig. 10-20.
The parallel method uses a decimal arithmetic unit composed of as many BCD
adders as there are digits in the number. The sum is formed in parallel and
requires only one microoperation. In the digit-serial bit-parallel method, the
digits are applied to a single BCD adder serially, while the bits of each coded
digit are transferred in parallel. The sum is formed by shifting the decimal
numbers through the BCD adder one at a time. For k decimal digits, this
configuration requires k microoperations, one for each decimal shift. In the all
serial adder, the bits are shifted one at a time through a full-adder. The binary
sum formed after four shifts must be corrected into a valid BCD digit. This
correction, discussed in Sec. 10-6, consists of checking the binary sum. If it is
greater than or equal to 1010, the binary sum is corrected by adding to it 0110
and generating a carry for the next pair of digits.

The parallel method is fast but requires a large number of adders. The
digit-serial bit-parallel method requires only one BCD adder, which is shared
by all the digits. It is slower than the parallel method because of the time
required to shift the digits. The all serial method requires a minimum amount
of equipment but is very slow.

fiw. =
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Multiplication

The multiplication of fixed-point decimal numbers is similar to binary except
for the way the partial products are formed. A decimal multiplier has digits that
range in value from O to 9, whereas a binary multiplier has only O and 1 digits.
In the binary case, the multiplicand is added to the partial product if the
multiplier bit is 1. In the decimal case, the multiplicand must be multiplied by
the digit multiplier and the result added to the partial product. This operation
can be accomplished by adding the multiplicand to the partial product a
number of times equal to the value of the multiplier digit.

The registers organization for the decimal multiplication is shown in
Fig. 10-21. We are assuming here four-digit numbers, with each digit occupy-
ing four bits, for a total of 16 bits for each number. There are three registers,
A, B, and Q, each having a corresponding sign flip-flop A,, B,, and Q..

0% 10 9150 0100
1000 01 1,1 1 06 1 11
Pidd 4y i ARA,
1 1
BCD adder BCD adder BCD adder
1 (8 /0 T % it | 0..0- 9 0 Q0L ]
(a) Parallel decimal addition: 624 + 879 = 1503
Augend
(8] (6] (0]
1 o 1 Sum
1 1 (0] (6]
9.49 {0 BCD g )
adder ¥ 1
1 (0] 1 1
(o] 1 o
O 1 (]
(0] 1 1 1
R 1
(b) Digit-serial, bit-parallel decimal addition
Augend Sum
o1 1 6le 6 i olo 1 0 op—s] sh——| ] |
FA A
[tooofo1 1 1]1 00 1}— c {
Addend 4+ Correction |

A
|

(c) All serial decimal addition

Figure 10-20 Three ways of adding decimal numbers.




SECTION 10-7 Decimal Arithmetic Operations 373

B
A
(& A )
By B, 103 | 102 | 10! | 10° SC
1L—k=4
E BCD arithmetic unit
(08 f
A A, 103 | 102 |10 | 107 10¥|. 10> | 10! 0L
\ J Q f
oo
A Increment
Decrement

Figure 10-21 Registers for decimal arithmetic multiplication and division.

Registers A and B have four more bits designated by A, and B, that provide an
extension of one more digit to the registers. The BCD arithmetic unit adds the
five digits in parallel and places the sum in the five-digit A register. The
end-carry goes to flip-flop E. The purpose of digit A, is to accommodate an
overflow while adding the multiplicand to the partial product during multipli-
cation. The purpose of digit B, is to form the 9’s complement of the divisor
when subtracted from the partial remainder during the division operation. The
least significant digit in register Q is denoted by Q.. This digit can be incre-
mented or decremented.

A decimal operand coming from memory consists of 17 bits. One bit (the
sign) is transferred to B, and the magnitude of the operand is placed in the
lower 16 bits of B. Both B,and A, are cleared initially. The result of the operation
is also 17 bits long and does not use the A, part of the A register.

The decimal multiplication algorithm is shown in Fig. 10-22. Initially, the
entire A register and B, are cleared and the sequence counter SC is set to a
number k equal to the number of digits in the multiplier. The low-order digit
of the multiplier in Q; is checked. If it is not equal to 0, the multiplicand in B
is added to the partial product in A once and Q, is decremented. Q; is checked
again and the process is repeated until it is equal to 0. In this way, the
multiplicand in B is added to the partial product a number of times equal to
the multiplier digit. Any temporary overflow digit will reside in A, and can
range in value from 0 to 9.

Next, the partial product and the multiplier are shifted once to the right.
This places zero in A, and transfers the next multiplier quotient into ;. The
process is then repeated k times to form a double-length product in AQ.




Multiply

!

Multiplicand in B
Multiplier in Q

AS(_QSQBS
A<0,B,<0
SC<k

dshr AQ
SC+SC—1

#0 </ck =0
END
(Product is in AQ)

Figure 10-22 Flowchart for decimal multiplication.

Division

Decimal division is similar to binary division except of course that the quotient
digits may have any of the 10 values from 0 to 9. In the restoring division
method, the divisor is subtracted from the dividend or partial remainder as
many times as necessary until a negative remainder results. The correct re-
mainder is then restored by adding the divisor. The digit in the quotient reflects
the number of subtractions up to but excluding the one that caused the
negative difference.

The decimal division algorithm is shown in Fig. 10-23. It is similar to the
algorithm with binary data except for the way the quotient bits are formed. The
dividend (or partial remainder) is shifted to the left, with its most significant
digit placed in A,. The divisor is then subtracted by adding its 10’s complement
value. Since B, is initially cleared, its complement value is 9 as required. The
carry in E determines the relative magnitude of A and B. If E = 0, it signifies
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Divide

Divisor in B
Dividend in AQ

A 4

Check for overflow

{

QS <--14&'®BS’
SC<k,B, <0

g

dshl AQ

| EA<4+B+1]

A<B \/ Azl |

O; <Qp +1

A<A+B L 4

EA<A+B+1

4

END
(Quotient is in Q)
(Remainder is in 4)

Figure 10-23 Flowchart for decimal division.

that A < B. In this case the divisor is added to restore the partial remainder
and Q) stays at 0 (inserted there during the shift). If E = 1, it signifies that
A = B. The quotient digit in Q; is incremented once and the divisor subtracted
again. This process is repeated until the subtraction results in a negative
difference which is recognized by E being 0. When this occurs, the quotient
digit is not incremented but the divisor is added to restore the positive remain-
der. In this way, the quotient digit is made equal to the number of times that
the partial remainder “goes” into the divisor.
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The partial remainder and the quotient bits are shifted once to the left and
the process is repeated k times to form k quotient digits. The remainder is then
found in register A and the quotient is in register Q. The value of E is neglected.

Floating-Point Operations

Decimal floating-point arithmetic operations follow the same procedures as
binary operations. The algorithms in Sec. 10-5 can be adopted for decimal data
provided that the microoperation symbols are interpreted correctly. The mul-

tiplication and division of the mantissas must be done by the methods de-
scribed above.
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1.1.2.15 Fill in the blanks type of questions <Minimum of ten>
a. The decimal representation for hex number F3 is

b. The binary equivalent for the decimal number 41.6875 is

c. The BCD code for the decimal number 248 is

d. Foragiven number N in base r having n digits, the (r-1)’s complement of N is defined as

e. The 10’s complement of a decimal number is obtained by adding —— to the 9's complement
value.



f.  When 2 unsigned numbers are added, an overflow is detected from the of
the most significant position.

g. Anoverflow for addition/ subtraction of two signed numbers is detected when the carry into

the sign bit position and carry out of the sign bit position are

h. Booth multiplication algorithm is followed when the binary integers are represented in

i.  When Booth algorithm is used for multiplication, the partial product does not change when the
multiplier .is identical to the previous multiplier -

j.  Floating point multiplication and division do not require an alignment of the

Answers: ( 1). 243 (2) 101001.1011 (3) 0010 0100 1000
(4) ( r"™-1)-N (5) 1 (6) carry out (7) not equal
(8) signed 2’s complement representation for negative integers. (9) bit, bit

(10) mantissa

1.1.2.16. Multiple choice questions<Minimum of ten>

1. Floating point representation is used to store
(A) Boolean values (B) whole numbers (C) real integers (D) integers
Ans: C

2. In computers, subtraction is generally carried out by
(A) 9’s complement (B) 10’s complement (C) 1’s complement (D) 2’s complement

Ans: D

3. The circuit used to store one bit of data is known as
(A) Register (B) Encoder (C) Decoder (D) Flip Flop
Ans: D

4. Which of the following is not a weighted code?
(A) Decimal Number system (B) Excess 3-cod

(C) Binary number System (D) None of these

Ans: B

5. Assembly language

(A) uses alphabetic codes in place of binary numbers used in machine language
(B) is the easiest language to write programs

(C) need not be translated into machine language



(D) None of these
Ans: A

6. The multiplicand register & multiplier register of a hardware circuit implementing booth's
algorithm have (11101) & (1100). The result shall be

(A) (812) 10 (B) (-12) 10 (C) (12) 10 (D) (-812) 10

Ans: A

7. What characteristic of RAM memory makes it not suitable for permanent storage?
(A) too slow (B) unreliable (C) it is volatile (D) too bulky
Ans: C

8. (2FAOC) 16 is equivalent to
(A) (195 084) 10 (B) (001011111010 0000 1100) 2 (C) Both (A) and (B) (D) None of these
Ans: B

9. The average time required to reach a storage location in memory and obtain its contents is
called the

(A) seek time (B) turnaround time (C) access time (D) transfer time

Ans: C

10. In signed-magnitude binary division, if the dividend is (11100) 2 and divisor is (10011) 2 then
the result is

(A) (00100) 2 (B) (10100) 2 (C) (11001) 2 (D) (01100) 2

K. Ans:B

True or False questions<Minimum of ten>

1.1.2.17. Fill the blank with true or false.

1. EEPROM comes under volatile memory category.

2. Thumb drive or pen drive is semiconductor memory.

3. The control unit generates the appropriate signal at the right moment.

4. While executing a program, CPU brings instruction and data from disk memory.

5. A memory module of capacity 16 * 4, indicates a storage of 128 bits.

6. A memory module of capacity of 1024 locations, the required address bus size is 10.

7. The program counter PC is used to store the address of the next instruction to be fetched from
Accumulator.




. n-1 n+l
8. For n-bit signed integer, the range of numbers that can be represented IS — 2 to 2 .

9. Given a number N in base r having n digits, the (r-1)’s complement of N is defined as

(r"-1)-r.

10. Floating point representation uses mantissa and an exponent part of radixR .

Answers: ( 1). false  (2) true (3) true (4) false (5) false
(6) true (7) false (8) false (9)false  (10) true

1.1.2.18. Review Questions

4.1.6.a.docx 4.1.6.b.docx 4.1.6. d.docx 4.1.6.e.docx 4.1.6.c.docx

Obijective type of questions(Very short notes)<Minimum of ten>
Analytical type questions<Minimum of ten>

Essay type Questions<As per requirements>

Problems<As per required Number>

Case study<As per required Number>

® o0 o

1.1.2.19. Skill Building Exercises/Assignments

a. Take the mother board of a computer and identify CPU, memory, peripheral ICs, BUS etc.
b. Buy the components of a computer, assemble, install the software and make it to function.

Eg:- -Prepare a model of something
-Trace something
-Prepare a report on something etc.,

1.1.2.20. Previous Questions (Asked by INTUK from the concerned Unit)

@j

JNTUK questions
unit-1.docx

1.1.2.21.  GATE Questions (Where relevant)



Subject is not in gate syllabus

1.1.2.22. Interview questions (which are frequently asked in a Technical
round-Placements)

o
4.1.10.docx

1.1.2.23. Real-Word (Live) Examples/Case studies wherever applicable

a. Listout the intel CPUs in various generation with their specifications. Write how the
performance was improved in each generation.

1.1.2.24. Suggested “Expert Guest Lectures” (both from in and outside of
the campus)

1.1.2.25. Literature references of Relevant NPTEL Videos/Web/You Tube
videos etc.

v

neptel vidieo
ref.docx

1.1.2.26. Any Lab requirements; if so link it to Lab Lesson Plan.
No.
1.1.2.27. Reference Text Books / with Journals Chapters etc.

T1: M. Moris Mano (2006), Computer System Architecture, 3" edition, Pearson/PHI, India.

T2: Carl Hamacher, ZvonksVranesic, SafeaZaky (2002), Computer Organization, 5" edition,
McGraw Hill, New Delhi, India

R1: Computer Organization Architecture- William Stallings (2006), 7" edition,
PHI/PEARSON.



