
UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 1

5.1 What is Perl
Perl is the Practical Extraction and Report Language and is freely available for downloading from the
Comprehensive Perl Archive Network (www.perl.com/CPAN/). Perl is a general-purpose programming
language originally developed for text manipulation and now used for a wide range of tasks including system
administration, web development, network programming, GUI development, and more. The current version of
Perl was Perl 5.20.

 Perl was created by Larry Wall.
 Perl is a stable, cross platform programming language.
 Perl is a portable, command line driven, interpreted programming/scripting language.
 It is used for mission critical projects in the public and private sectors.
 Perl is Open Source software, licensed under the GNU General Public License(GPL).

A Perl program (or script) consists of a sequence of commands and the source code file can be named

arbitrarily but usually uses the .pl suffix. A Perl interpreter reads the source file and executes the commands in
the order given. You may use any text editor to create Perl scripts. These scripts will work on any platform
where the Perl interpreter has been installed.

The Perl scripting language is usually used in the following applications areas:

 Web CGI programming
 DOS and UNIX shell command scripts
 Text input parsing
 Report generation
 Text file transformations, conversions
 System administration
 Network programming
 GUI development

Perl Features
Perl has many of the features. Some of them are
Perl is free
Perl’s source code is open and free. Anybody can download the C source that constitutes a Perl interpreter. We

can easily extend the core functionality of Perl by modifying the Perl source code.

Perl is simple to learn, concise and easy to read
Perl has the syntax similar to C and shell script but with less restrictive format. Most programs are quicker to
write in Perl because of its use of built-in functions and a huge standard and contributed library. Perl can be easy
to read because the code can be written in a clear and concise format that almost like English sentences.

Perl is fast
Perl is not an interpreter in the strictest sense – when we execute a Perl program it is actually compiled into a
highly optimized language before it is executed. Compared to most scripting languages, this makes execution
almost as fast as compiled C code. But because the code is still interpreted, there is no compilation process and
applications can be written and edited much faster than with other languages without any performance
problems.

Perl is extensible
We can write Perl based packages and modules that extend the functionality of the language. We can also call
external C code directly from Perl to extend the functionality further.

Perl has flexible data types
We can create simple variables that contain text and numbers. We can also handle arrays of values as simple
lists. We can create associative arrays as hashes. Perl also has the feature of references which allows us to create
a complex data structure.

Perl is object oriented
Perl supports all of the object oriented features – inheritance, polymorphism, and encapsulation. There is no
boundary as there is with C and C++.

Perl is collaborative
Most programmers supply and use the modules and scripts via CPAN (Comprehensive Perl Archive Network).
This is a repository of the best modules and scripts available.

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 2

5.2 The Perl History
Perl was created in the UNIX tradition of open source software. Perl 1.0 was released 18 December

1987 (the Perl birthday) by Larry Hall with the following description:

“Perl is an interpreted language optimized for scanning arbitrary text files, extracting

information from those text files, and printing reports based on that information. It's also a

good language for many system management tasks. The language is intended to be practical

(easy to use, efficient, complete) rather than beautiful (tiny, elegant, minimal). It combines

some of the best features of C, sed, awk, and sh. Expression syntax corresponds quite closely

to C expression syntax”.

Version Date Details
Perl 0 Introduced Perl to Larry Wall’s office associates
Perl 1 Jan 1988 Introduced Perl to the world
Perl 2 Jun 1988 Introduced Harry Spencer’s regular expression package
Perl 3.0 Oct 1989 Introduced the ability to handle binary data

Perl 4 Mar 1991

Introduced the first “Camel” book (Programming Perl, by Larry Wall,
Tom Christiansen, and Randal L Schwartz; O’Reilly & Associates). The

book drove the name change, just so it could refer to Perl 4, instead of
Perl 3.0

Perl 4.036 Feb 1993 The last stable release of Perl 4

Perl 5.0 Oct 1994
A complete rewrite of Perl adding objects and a modular organization.
The modular structure makes it easy for everyone to develop Perl
modules to extend the functionalities of Perl.

Perl 5.005_02 Aug 1998 The next major stable release.
Perl 5.005_03 Mar 1999 The last stable release before 5.6

Perl 5.6 Mar 2000
Introduced unified fork support, better threading, an updated Perl
compiler, and the our keyword.

5.3 Perl Programming ABC
To create a Perl program, you may simply use your favorite text editor. The very first line, before any other
characters in the source code file, indicates the command to invoke the Perl interpreter. For example,

#!/usr/local/bin/perl

It indicates the location of the Perl interpreter which will execute the rest of the file. The Perl program file must
be executable. On UNIX do:

chmod a+rx program name

On Windows, run Perl programs from the MS-DOS prompt. To run a Perl program use either one of

perl –w program name arg1 arg2 ...
program name arg1 arg2 ...

As a Web CGI program, a Perl script must be placed in special cgi-bin directories configured by the Web server.

In a Perl script:

 Comments start with the # character and continue to the end of the line.
 Each Perl statement ends with a semicolon (;).
 Statements are executed sequentially.
 The statement exit(0); (exit(1);) terminates the program normally (abnormally).

Here is a short Perl program (Ex: cmdLine.pl) that simply displays the command-line arguments:

#!/usr/bin/perl
print "@ARGV\n"; ## displays all the command line arguments
print "First arg: $ARGV[0]\n"; ## display first argument
print "Second arg: $ARGV[1]\n"; ## display second argument
print "Third arg: $ARGV[2]\n"; ## display third argument

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 3

On a UNIX system, enter this program into the file cmdLine.pl and do “chmod a+rx cmdLine.pl” to make it
executable.

Then issue the command ./cmdline.pl a b c d e to run the program which is in the current directory (./). You
should see the display
a b c d e
First arg: a
Second arg: b
Third arg: c

You can run Perl programs similarly under MS-DOS.
 C:/CSE540>perl –w cmdLine.pl a b c d e

5.4 Perl Variables
 Perl provides three types of variables:

1. Scalar
2. Array (list), and
3. Association array (hash)

5.4.1 Scalars
A scalar variable has a ‘$’ prefix and can take on any string or numerical values. A Scalar variable always holds
one value at a time.
For example,

$var = 'a string'; ## a quoted string
$n = length $var; ## is 8
$x = 12;
$abc = "$var$x"; ## a string12

Characters enclosed in single quotes are taken literally while variables are meaningful inside double quotes.

5.4.2 Arrays (Lists)
Array is a one-dimensional list of scalars. Perl uses the "@" prefix and parentheses with respect to the name of
an array as a whole, whereas individual elements within an array are referred to as scalars and the index is
placed in square brackets.

Functions associating with arrays:
push (): appends a new element to the end of the array

Syntax:
push (array, value)

pop (): The pop function to remove the last element from the array
 Syntax:

pop (array)

unshift (): The function unshift adds an element at the beginning of an array.
 Syntax:

unshift (array, value)

shift (): The function shift deletes an element at the beginning of an array.
 Syntax:

shift (array)

For example

#!/usr/bin/perl
@arr = ("aa", "bb", "cc", "dd"); ## creating an array
print "$arr[0]\n"; ## first array element is aa
$arr[2]=7; ## third element set to 7
$m = $#arr; ## 3, last index of @arr
$n = @arr; ## n is 4 length of @arr
print "@arr\n"; ## aa bb 7 dd
push(@arr, "xyz"); ## put on end of array
print "@arr\n"; ## aa bb 7 dd xyz
$last = pop(@arr); ## pop off end of array

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 4

print "@arr\n"; ## aa bb 7 dd

Executing this program produces the following output

aa
aa bb 7 dd
aa bb 7 dd xyz
aa bb 7 dd

We use the scalar notation to retrieve or set values on an array using indexing. The special prefix $# returns the
index of the last array element and -1 if the array has no elements. Hence, $#arr+1 is the array length. Assigning
an array to a scalar produces its length. Displaying the entire array is as easy as printing it.

5.4.3 Association Arrays (Hashes)
An association array, also known as a hash array, is an array with even number of elements. Elements come in
pairs, a key and a value. Perl association array variables use the % prefix.

You can create an hash arrays with the notation:

(key1 => value1, key2 => value2, ...)

The keys serve as symbolic indices for the corresponding values on the association array.

For example:

%asso = ("a" => 7, "b" => 11); ## creating a hash
print "$asso{'a'}\n"; ## displays 7
print "$asso{'b'}\n"; ## displays 11
print "@asso{'a', 'b'}\n"; ## displays 7, 11

The symbol => makes the association perfectly clear.

To retrieve a value from an association array, use its key. Note the $ prefix is used with the key enclosed in
curly braces ({}). To obtain a list of values from an association list, the @ prefix can be used. Use a non-existent
key or a value as a key get an undefined value (undef).

Assign a new value with a similar assignment where the key may or may not already be on the association array:

$asso{'c'} = 13;

To remove key-value pairs from a hash, use calls like:

delete($asso{'c'}); (deletes one pair)
delete(@asso{'a', 'c'}); (deletes a list of pairs)

The keys function produces an array of keys of a given hash:

@all_keys = keys(%asso) ## ('a', 'b', 'c')
The values function produces an array of values of a given hash:

@all_values = values (%asso) ## (7, 11, 13)

5.5.4 True or False
In Perl Boolean values are scalar values interpreted in the Boolean context.

False values:

 The numerical zero(0)
 The string zero(“0”)
 The Empty string(“”), and
 undefined value are Boolean false.

True values:
All other scalar values are Boolean true. Also any non-zero number and any non-empty string are considered
true.

5.5 Automatic Data Context
Perl makes programming easier by detecting the context within which a variable is used and automatically
converts its value appropriately. For example you can use strings as numbers and vice versa.

$str1 = "12.5";
$str2 = "2.5";
$sum = $str1 + $str2; ## adding as numbers (3)

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 5

print "$sum\n"; ## displaying (4)
We used the strings as numbers on line 3 and the $sum, which is a number, as a string on line 4.

5.6 Perl Operators
Perl language supports many operator types but following is a list of most frequently used operators:

 Arithmetic Operators
 Relational Operators
 Logical Operators
 Assignment Operators
 Bitwise Operators
 Miscellaneous Operators

Perl Arithmetic Operators
Assume variable $a holds 10 and variable $b holds 20 then:

Operator Description Example
+ Addition - Adds values on either side of the operator $a + $b will give 30

-
Subtraction - Subtracts right hand operand from left hand
operand

$a - $b will give -10

*
Multiplication - Multiplies values on either side of the
operator

$a * $b will give 200

/ Division - Divides left hand operand by right hand operand $b / $a will give 2

%
Modulus - Divides left hand operand by right hand
operand and returns remainder

$b % $a will give 0

**
Exponent – Performs exponential (power) calculation on
operators

$a**$b will give 10 to the
power 20

Perl Relational Operators
Assume variable $a holds 10 and variable $b holds 20

Operator Description Example

==
Checks if the value of two operands are equal or
not, if yes then condition becomes true.

($a == $b) is not true.

!=
Checks if the value of two operands are equal or
not, if values are not equal then condition
becomes true.

($a != $b) is true.

<=>

Checks if the value of two operands are equal or
not, and returns -1, 0, or 1 depending on whether
the left argument is numerically less than, equal
to, or greater than the right argument.

($a <=> $b) returns -1.

>
Checks if the value of left operand is greater than
the value of right operand, if yes then condition
becomes true.

($a > $b) is not true.

<
Checks if the value of left operand is less than
the value of right operand, if yes then condition
becomes true.

($a < $b) is true.

>=
Checks if the value of left operand is greater than
or equal to the value of right operand, if yes then
condition becomes true.

($a >= $b) is not true.

<=
Checks if the value of left operand is less than or
equal to the value of right operand, if yes then
condition becomes true.

($a <= $b) is true.

Perl Assignment Operators
Assume variable $a holds 10 and variable $b holds 20 then:

Operator Description Example

=
Simple assignment operator, Assigns values from
right side operands to left side operand

$c = $a + $b will assign
value of $a + $b into $c

+=
Add AND assignment operator, It adds right
operand to the left operand and assign the result

$c += $a is equivalent to $c
=$c + $a

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 6

to left operand

-=
Subtract AND assignment operator, It subtracts
right operand from the left operand and assign
the result to left operand

$c -= $a is equivalent to $c =
$c - $a

*=
Multiply AND assignment operator, It multiplies
right operand with the left operand and assign the
result to left operand

$c *= $a is equivalent to $c
= $c * $a

/=
Divide AND assignment operator, It divides left
operand with the right operand and assign the
result to left operand

$c /= $a is equivalent to $c =
$c / $a

%=
Modulus AND assignment operator, It takes
modulus using two operands and assign the result
to left operand

$c %= $a is equivalent to $c
= $c % a

**=
Exponent AND assignment operator, Performs
exponential (power) calculation on operators and
assign value to the left operand

$c **= $a is equivalent to $c
= $c ** $a

Perl Bitwise Operators

Operator Description Example

&
Binary AND Operator copies a bit to the result if it exists in
both operands.

($a & $b) will give 12 which
is 0000 1100

|
Binary OR Operator copies a bit if it exists in each other
operand.

($a | $b) will give 61 which
is 0011 1101

^
Binary XOR Operator copies the bit if it is set in
one operand but not both.

($a ^ $b) will give 49 which
is 0011 0001

~

Binary Ones Complement Operator is unary and
has the effect of 'flipping' bits.

(~$a) will give -61 which is
1100 0011 in 2's
complement form due to a
signed binary
number.

<<
Binary Left Shift Operator. The left operands
value is moved left by the number of bits
specified by the right operand.

$a << 2 will give 240 which
is 1111 0000

>>
Binary Right Shift Operator. The left operands
value is moved right by the number of bits
specified by the right operand.

$a >> 2 will give 15 which is
0000 1111

Perl Logical Operators
Assume variable $a holds true and variable $b holds false then:

Operator Description Example

and
Called Logical AND operator. If both the operands are true
then then condition becomes true.

($a and $b) is false.

&&
C-style Logical AND operator copies a bit to the
result if it exists in both operands.

($a && $b) is false.

or
Called Logical OR Operator. If any of the two operands are
non-zero then then condition becomes true.

($a or $b) is true.

||
C-style Logical OR operator copies a bit if it
exists in either operand.

($a || $b) is true.

not
Called Logical NOT Operator. Use to reverses
the logical state of its operand. If a condition is
true then Logical NOT operator will make false.

not($a and $b) is true.

Miscellaneous Operators

Operator Description Example

.
Binary operator dot (.) concatenates two strings. If $a="abc", $b="def" then

$a.$b will give "abcdef"

x
The repetition operator x returns a string consisting of the
left operand repeated the number of times specified by the
right operand.

('-' x 3) will give xxx.

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 7

..
The range operator .. returns a list of values counting (up by
ones) from the left value to the
right value

(2..5) will give (2, 3, 4, 5)

++
Auto Increment operator increases integer value
by one

$a++ will give 11

--
Auto Decrement operator decreases integer value
by one

$a-- will give 9

->
The arrow operator is mostly used in
dereferencing a method or variable from an
object or a class name

$obj->$a is an example to
access variable $a from
object $obj.s

5.7 Perl Conditional and Control Structures

Perl conditional statements helps in decision making which require the programmer specifies one or
more conditions to be tested by the program, along with statements to be executed if the condition is determined
to be true, and other statements to be executed if the condition is determined to be false.
Perl programming language provides following types of conditional statements.

5.7.1 Conditional Structures

Statement Description

if statement
An if statement consists of a Boolean expression followed by one or
more statements.

if...else statement An if statement can be followed by an optional else statement.
if...elsif...else
statement

An if statement can be followed by an optional elsif statement and
then by an optional else statement.

unless statement
An unless statement consists of a Boolean expression followed by one
or more statements.

unless...else
statement

An unless statement can be followed by an optional else statement.

unless...elsif..else
statement

An unless statement can be followed by an optional elsif
statement and then by an optional else statement.

switch statement
With latest versions of Perl, We can make use of switch statement
which allows a simple way of comparing a variable value against
various conditions.

if – else statement
A Perl if statement can be followed by an optional else statement, which executes when the Boolean expression
is false.
Syntax:
The syntax of an if...else statement in Perl programming language is:

if(boolean_expression) {

statement(s) will execute if the given condition is true
}
else {

statement(s) will execute if the given condition is false
}

If the Boolean expression evaluates to true then if block of code will be executed otherwise else block of code
will be executed.
Example:

#!/usr/local/bin/perl
$a = 100;
check the boolean condition using if statement
if($a < 20) {

printf "a is less than 20\n";
}
else {

printf "a is greater than 20\n";
}
print "value of a is : $a\n";

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 8

When the above code is executed, it produces following result:
a is greater than 20
value of a is : 100

if .. elsif Statement
An if statement can be followed by an optional elsif...else statement, which is very useful to test multiple
conditions using single if...elsif statement.
Syntax:
The syntax of an if...elsif...else statement in Perl programming language is:

if(boolean_expression 1) {
Executes when the boolean expression 1 is true

}
elsif(boolean_expression 2) {

Executes when the boolean expression 2 is true
}
elsif(boolean_expression 3) {

Executes when the boolean expression 3 is true
}
else {

Executes when the none of the above condition is true
}

Example:

#!/usr/local/bin/perl
$a = 100;
check the boolean condition using if statement
if($a == 20) {

printf "a has a value which is 20\n";
}
elsif($a == 30) {

printf "a has a value which is 30\n";
}
else {

printf "a has a value which is $a\n";
}

When the above code is executed, it produces following result:
a has a value which is 100

unless Statement
A Perl unless statement consists of a Boolean expression followed by one or more statements.
Syntax:
The syntax of unless statement in Perl programming language is:

unless(boolean_expression)
{

statement(s) will execute if the given condition is false
}

If the Boolean expression evaluates to false then the block of code inside the unless statement will be

executed. If Boolean expression evaluates to true then the first set of code after the end of the unless statement
(after the closing curly brace) will be executed.

Example:

#!/usr/local/bin/perl
$a = 20;
check the boolean condition using unless statement
unless($a < 20) {

if condition is false then print the following
printf "a is not less than 20\n";

}
print "value of a is : $a\n";

When the above code is executed, it produces following result:

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 9

a is not less than 20
value of a is : 20

switch Statement
A switch statement allows a variable to be tested for equality against a list of values. Each value is called a case,
and the variable being switched on is checked for each switch case.

Syntax:
The synopsis for a switch statement in Perl programming language is as follows:

switch(argument) {
case 1 { print "number 1" }
case "a" { print "string a" }
case [1..10] { print "number in list" }
case (\@array) { print "number in list" }
case (\%hash) { print "entry in hash" }
else { print "previous case not true" }

}

The following rules apply to a switch statement:
 The switch statement takes a single scalar argument of any type, specified in parentheses.
 A switch statement can have an optional else case, which must appear at the end of the switch. The

default case can be used for performing a task when none of the cases is matched.
 If a case block executes an untargeted next, control is immediately transferred to the statement after the

case statement (i.e. usually another case), rather than out of the surrounding switch block.

Example:

#!/usr/local/bin/perl
use Switch;
$var = 10;
@array = (10, 20, 30);
%hash = ('key1' => 10, 'key2' => 20);
switch($var){
case 10 { print "number 100\n"; next; }
case "a" { print "string a" }
case [1..10] { print "number in list" }
case (\@array) { print "number in list" }
case (\%hash) { print "entry in hash" }
else { print "previous all cases not true" }
}

When the above code is executed, it produces following result:
number 100
number in list

5.7.2 Control Structures
A loop statement allows us to execute a statement or group of statements multiple times. Perl programming
language provides following four types of loops to handle looping requirements.

Loop Type Description

while
Repeats a statement or group of statements while a given
condition is true. It tests the condition before executing the loop body.

until
Repeats a statement or group of statements until a given
condition becomes true. It tests the condition before executing the loop body.

for
Execute a sequence of statements multiple times and abbreviates the code that
manages the loop variable.

foreach
The foreach loop iterates over a normal list value and sets the variable VAR to
be each element of the list in turn.

do..while
Like a while statement, except that it tests the condition at the end of the loop
body

nested loops We can use one or more loop inside any another while, for or do..while loop.

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 10

while loop
A while loop statement in Perl programming language repeatedly executes a target statement as long as a given
condition is true.
Syntax:
The syntax of a while loop in Perl programming language is:

while(condition)
{

statement(s);
}

Example:
#!/usr/local/bin/perl
$a = 10;
while loop execution
while($a < 15) {

printf "Value of a: $a\n";
$a++;

}
When executed, above code produces following result:

Value of a: 10
Value of a: 11
Value of a: 12
Value of a: 13
Value of a: 14

until loop
An until loop statement in Perl programming language repeatedly executes a target statement as long as a given
condition is false.
Syntax:
The syntax of a until loop in Perl programming language is:

until(condition) {

statement(s);
}

Example:
#!/usr/local/bin/perl
$a = 5;
until loop execution
until($a > 10) {

printf "Value of a: $a\n";
$a = $a + 1;

}
When executed, above code produces following result:

Value of a: 5
Value of a: 6
Value of a: 7
Value of a: 8
Value of a: 9
Value of a: 10

for loop
A for loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a
specific number of times.
Syntax:
The syntax of a for loop in Perl programming language is:

for (initialization; condition; increment or decrement)
{

statement(s);
}

Example:
#!/usr/local/bin/perl
for loop execution
for($a = 10; $a < 15; $a = $a + 1) {

print "value of a: $a\n";

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 11

}

When the above code is executed, it produces following result:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14

The foreach loop iterates over a list value and sets the control variable (var) to be each element of the list in
turn:

Syntax:
The syntax of a foreach loop in Perl programming language is:

foreach var (list) {
statements;

}

Example:

#!/usr/local/bin/perl
@list = (2, 20, 30);
foreach loop execution
foreach $a (@list) {

print "value of a: $a\n";
}

When the above code is executed, it produces following result:
value of a: 2
value of a: 20
value of a: 30

5.8 Perl Functions/Subroutines
A Perl subroutine or function is a group of statements that together perform a task. We can divide up the code
into separate subroutines. Perl uses the terms subroutine, method and function interchangeably.

 You define functions with the sub keyword.
 A function can be placed anywhere in your Perl source code file. Usually all functions are placed at the

end of the file.
 For substantial programming, functions and objects can be placed in separate packages or modules and

then imported into a program with the use statement

Define and Call a Function
The general form of a function is:

sub functionName
{

body of the functions
}

A call to the above may take any of these forms:
functionName(); ## no arg
functionName($a); ## one arg
functionName($aa, $bb); ## two args
functionName(@arr); ## array elements as args
functionName($aa, @arr); ## $aa and array elements as args

Example

#!/usr/bin/perl
Function definition
sub Hello {

print "Hello, World!\n";
}

Function call

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 12

Hello();

When above program is executed, it produces following result:

Hello, World!

Passing Arguments to a Function
We can pass various arguments to a subroutine and they can be accessed inside the function using the special
array @_ . Thus the first argument to the function is in $_[0], the second is in $_[1], and so on.

Example

#!/usr/bin/perl
Function definition
sub Sum
{

$sum = 0;
 my ($a,$b,$c) = @-;

$sum = $a+$b+$c;
print "Sum of the given numbers : $sum\n";

}
Function call
Sum(10, 20, 30);

When above program is executed, it produces following result:

Sum of the given numbers : 60

Returning Value from a Function
We can return a value from subroutine using return statement. If we are not returning a value from a subroutine
then last calculation result in a subroutine is the return value. We can return arrays and hashes from the
subroutine like any scalar values.
Example

#!/usr/bin/perl
Function definition
sub Average
{

get total number of arguments passed.
$n = scalar(@_);
$sum = 0;
foreach $item (@_)
{

$sum += $item;
}
$average = $sum / $n;
return $average;

}
Function call
$num = Average(10, 20, 30);
print "Average for the given numbers : $num\n";

When above program is executed, it produces following result:
Average for the given numbers : 20

5.8.1 Local Variables in Function

By default, all variables in Perl are global variables which means they can be accessed from anywhere
in the program. But we can create private variables called lexical variables at any time with my or local
keywords.

A variable declared by my is known only within the function or source code file, in the same sense as local
variables in C, C++, or Java.

my (var1, var2, ...);

A variable declared by local is known within the function and other function it calls at run-time,

local (var1, var2, ...);

Example

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 13

#!/usr/bin/perl
$string = "Hello, World!"; # Global variable
print "$string\n";
printHello(); # Function call
print "$string\n";

sub printHello # Function definition
{

my $string; # Local variable for printHello function
$string = "Hello, Function!";
print "$string\n";

}

When above program is executed, it produces following result:

Hello, World!
Hello, Function!
Hello, World!

5.8.2 Temporary Values via local()
The local is mostly used when the current value of a variable must be visible to called subroutines. A local just
gives temporary values to global (meaning package) variables. This is known as dynamic scoping.

Example

#!/usr/bin/perl
$string = "Hello, World!"; # Global variable
printHello(); # Function call
print "$string\n";

sub printHello # Function definition
{

local $string; # Private variable for printHello function
$string = "Hello, Function!";
printMe(); # Function call
print "$string\n";

}

sub printMe # Function definition
{

print "$string\n";
}

When above program is executed, it produces following result:
Hello, Function!
Hello, Function!
Hello, World!

5.8.3 our
The our keyword (introduced in Perl 5.6) declares a variable to be global, effectively making it the
complete opposite of my. For example,

our $str = "Hello World";
print "$str\n";
printHello();
print "$str\n";

sub printHello
{

our $str = "Hello, Function";
print "$str\n";

}

produces

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 14

Hello World
Hello Function
Hello Function

5.9 Perl I/O
5.9.1 Standard I/O
In Perl, the file handles STDIN, STDOUT, and STDERR stand for the standard input (from keyboard),
standard output (to screen), and standard error output (to screen, no buffering) respectively. The notation
<input-source> is handy to read lines from an input source.

For example,

$line = <STDIN>; /* or simply $line = <> */

Reads one line from standard input. Repeated execution of this statement will let you read line by line. The
value of $line has the line termination character at the end.

A handy function to remove any line terminator is the Perl built-in function chomp:

$str = chomp($line);

5.9.2 File I/O
Opening and Closing Files
There are following two functions with multiple forms which can be used to open any new or existing file in
Perl.

open FILEHANDLE, EXPR
open FILEHANDLE

sysopen FILEHANDLE, FILENAME, MODE, PERMS
sysopen FILEHANDLE, FILENAME, MODE

Here FILEHANDLE is the file handle returned by open function and EXPR is the expression having file name
and mode of opening the file.

Open Function
Following is the syntax to open file.txt in read-only mode. Here less than < sign indicates that file has to be
opened in read-only mode.

open(IN, "<file.txt");

Here IN is the file handle which will be used to read the file. Here is the example which will open a file and will
print its content over the screen.

#!/usr/bin/perl
$file = $ARGV[0]; # file name, a string
open(IN, $file) || die("can't open $file:$!"); # opens or fails
@lines = <IN>; # reads into an array
close(IN); # closes input file
print @lines;

Following is the syntax to open file.txt in writing mode. Here greater than (>) sign indicates that file has to
be opened in writing mode

open(OUT, ">file.txt") or die "Couldn't open file file.txt, $!";

This example actually truncates (empties) the file before opening it for writing, which may not be the desired
effect. If we want to open a file for reading and writing, we can put a plus sign (+) before the > or < characters.
For example, to open a file for updating without truncating it:

open(OUT, "+<file.txt") or die "Couldn't open file file.txt, $!";

We can open a file in append mode. In this mode writing point will be set to the end of the file.

open(OUT,">>file.txt") || die "Couldn't open file file.txt, $!";

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 15

A double >> opens the file for appending, placing the file pointer at the end, so that we can immediately start
appending information.

open(DATA,">>file.txt") || die "Couldn't open file file.txt, $!";

Here is the example which will open a file in append mode and print its content over the screen.

$file = $ARGV[0];
open (OUT,">>$file") or die "file is failed to open $!";
print OUT "welcome to perl\n";
open (OUT,"<$file") or die "file is failed to open $!";
@arr = <OUT>;
close(OUT);
print "@arr";

Following is the table which gives possible values of different modes

Entities Definition
< or r Read Only Access
> or w Creates, Writes, and Truncates
>> or a Writes, Appends, and Creates
+< or r+ Reads and Writes
+> or w+ Reads, Writes, Creates, and Truncates
+>> or a+ Reads, Writes, Appends, and Creates

Close Function
To close a filehandle, and therefore disassociate the file handle from the corresponding file, we use the close
function. This flushes the file handle’s buffers and closes the system's file descriptor.

close FILEHANDLE
close

If no FILEHANDLE is specified, then it closes the currently selected filehandle. It returns true only if
it could successfully flush the buffers and close the file.

close (IN) or die "Couldn't close file properly";

File Checks

5.9.3 Inter- process I/O
From a Perl program, you can execute any shell-level command
(as another process on the same computer) and obtain its output
with

$result = `command string`

where the command string is enclosed in backquotes (``). For
example,

$files = `ls –l`;
You can open another process for reading or writing. For example,

open(MAIL, "| /usr/sbin/sendmail") || die("fork failed") ;
gives MAIL for writing to the sendmail process.

5.10 A Form-to-Email Program
For many websites, forms are used to collect information for off-line processing. Such forms can be supported
by a well-designed server-side program that takes the form-collected data and sends email to designated

Check Meaning

-f is a plain file
-r is readable
-x is executable
-e is exists
-z is empty
-s is file size not 0
-w is writable
-T is a text file
-l is symbolic link
-d is directory

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 16

persons. Hidden fields in the form can be used to customize and control the behavior of the program to suit
diverse needs. As early as 1995, such a CGI program was created and placed on the Web by Matt Wright.

Below figure shows the FormToMail architecture. The form-supplied configuration parameters (dashed arrow)
controls how the CGI program works. The form-supplied email content (solid arrow) is sent to the target
recipient and reflected in the confirmation response page.

Fig: FormToMail architecture

Form.html
<html>
<body>

<form method="post" action="/cgi-bin/formMail.cgi">
<input type="hidden" name="formid" value="webtong_hosting" />
<input type="hidden" name="subject" value="Web Hosting" />
<input type="hidden" name="page_title" value="Hosting Request Received" />
<input type="hidden" name="required" value="domain,phone,email,sender_name" />

 Name: <input type="text" name="pname" size=”25”/>

E-mail: <input type="text" name="email" size=”25”/>

<input type="Submit" value=”Send Mail”/>

</form>
</body>
</html>

Ex: FormToMail.pl

#!/usr/bin/perl

formMail.cgi
use CGI qw(:standard); ## uses CGI
my $formid, $front, $back, $recipient; ## global vars

Customization begin
$mailprog = '/usr/lib/sendmail -t'; ## location of sendmail
@referrers = ();
Customization end
my @referrers = ("sacet.ac.in", "131.123.35.90");
my @referrers = ('google.com', 'cs.kent.edu', 'rooster.localdomain');

sub checkReferer
{
 if ($ENV{'REQUEST_METHOD'} eq "GET") // disallowed
 {
 error('get request not allowed');
 }
 my $url= $ENV{'HTTP_REFERER'};
 if ($url)
 {
 foreach $referrer (@referrers)

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 17

 {
 if ($url =~ m|https?://([^/0-9]*)$referrer|i) # (3)
 {
 return;
 }
 }
 }
 error('bad_referrer');
}
Configuration values
my %Config=('formid' => '', 'sender_name' => '', 'email' => '', 'subject' => 'Form Email','redirect' => '', 'sort' =>
'','print_blank_fields' =>

'','page_title' => 'Thank You','required' => 'formid,email,sender_name');
my %Recipient=('webtong_hosting' => 'sales@webtong.com','webtong' =>
'info@webtong.com','wdp_MailForm' => 'test');
my %Cc = ('webtong_hosting' => 'DomainMaster@webtong.com');
?$Config{'formid'}.front
$Config{'formid'}.back

sub formData
{
 my ($name, $value);
 foreach $name (param()) ## for each name-value pair
 {
 $value = param($name);
 if (defined($Config{$name})) ## set Config values
 {
 if ($name eq 'required') {
 $Config{$name} = $Config{$name} . "," . $value;
 }
 else {
 $Config{$name} = $value;
 }
 if ($name eq 'email' || $name eq 'sender_name')
 {
 push(@Field_Order,$name);
 $Form{$name} = $value;
 }
 }
 else ## set Form values
 {
 if ($Form{$name} && $value)
 {
 $Form{$name} = "$Form{$name}, $value";
 }
 elsif ($value)
 {
 push(@Field_Order,$name);
 $Form{$name} = $value;
 }
 }
}
 ## removes white spaces and obtains required fields
 $Config{'required'} =~ s/(\s+|\n)?,(\s+|\n)?/,/g;
 $Config{'required'} =~ s/(\s+)?\n+(\s+)?//g;
 @Required = split(/,/,$Config{'required'});
}

sub checkData
{
 my ($require, @error, $formid);
 $formid = $Config{'formid'}; ## formid

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 18

 $recipient=$Recipient{$formid}; ## mail recipient
 if ((-e "$formid.front") && (-e "$formid.back"))
 {
 $front="$formid.front"; ## response front file
 $back ="$formid.back"; ## response back file
 }
 if (!$recipient) { error('no_recipient') }
 foreach $require (@Required)
 {
 if ($require eq 'email') ## email address must be valid
 {
 if (!checkEmail($Config{$require}))
 { push(@error,$require); }
 }
 elsif (defined($Config{$require})) ## check required config values
 {
 if (!$Config{$require})
 { push(@error,$require); }
 }
 elsif (!$Form{$require}) ## check required form data
 { push(@error,$require); }
 }
 if (@error) { error('missing_fields', @error) } ## If error
}

sub sendMail
{
 if ($recipient eq "test") { return; }
 open(MAIL,"|$mailprog") || die("open $mailprog failed") ; ## opens mail program
 mailHeaders(); ## email headers
 print MAIL "This is a message from the " . "$Config{'site'}. It was submitted by\n";
 print MAIL "$Config{'sender_name'} " . "($Config{'email'}) on $date\n";
 print MAIL "-" x 75 . "\n\n";
 if ($Config{'sort'} eq 'alphabetic') { ## alphabetical order
 mailFields(sort keys %Form);
 }
 elsif(getOrder()) { ## specific order
 mailFields(@sorted_fields);
 }
 else { ## no ordering
 mailFields(@Field_Order);
 }
 print MAIL "-" x 75 . "\n\n";
 close (MAIL);
}

checkReferer(); ## checks referring URL
$date = getDate(); ## retrieves current date
formData(); ## obtains data sent from form
checkData(); ## checks data for required fields etc.
response(); ## returns response or redirects
sendMail(); ## sends email
exit(0); ## terminates program

5.11 Pattern Matching in Perl

A regular expression is a string of characters that defines the pattern or patterns you are viewing. The
syntax of regular expressions in Perl is very similar to what you will find within other regular expression.
Supporting programs, such as sed, grep, and awk.

The Perl relational operators =~ (match) and !~ (non-match) are used for pattern matching. In Perl, patterns are
specified as extended regular expressions. Patterns are given inside /'s (the pattern delimiter).

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 19

Symbol Meaning
/ / Represents a pattern
^ At beginning of the string
$ At the end of the string
i ignore case
g global search

 The following are some simple matching examples involving the string $line:

$line=”A big fat hen”;
if ($line =~ /hen/) ## contains hen
if ($line =~ /Hen/) ## does not contain Hen
if ($line =~ /Hent/i) ## contains Hen, ignoring case
if ($line =~ /^Hen/) ## Hen at beginning of line
if ($line =~ /hen$/) ## hen at end of line

If the pattern contains / then it is convenient to use a leading m which allows you to use any non-alphanumeric
character as the pattern delimiter:

if ($url =~ m |http://|)
Or you can use \ to escape the / in the pattern:

if ($url =~ /http:\/\//) ##Same as Above

Special characters in Perl patterns include:

Pattern Meaning
\n A newline
\t A tab
\w Any alphanumeric (word) character, same as [a-zA-Z0-9_]
\W Any non-word character, same as [^a-zA-Z0-9_]
\d Any digit. The same as [0-9]
\D Any non-digit. The same as [^0-9]
\s Any whitespace character: space, \t, \n, etc
\S Any non-whitespace character

Substitutions
Often we look for a pattern in a string for the purpose of replacing it. This can be done easily with the string
matching operator =~:

 $line =~ s/HTTP/http/; ##replaces first occurrence of HTTP in $line by http.
 $line =~ s/HTTP/http/g; ##|replaces all occurrences globally in $line.
 $line =~ s/HTTP/http/gi; ##ignores case in global matching.
 $line =~ s/pattern/cmd/e; ##uses the replacement string obtained by executing cmd.

5.12 Simple Page Search

The website SymbolicNet.org has an email directory for people in Symbolic Computation, an area of
research. The email directory page offers a simple page-search function (Ex: PageSearch) allowing users to
enter a text string to obtain all email listings matching the given string. Figure 13.4 shows the form at the
beginning of the email directory page (listing.html).
The HTML source code for the form is (listing.html):

<html>
<head>
 <title> Simple Page Search</title>
<head>
<body>
<p>To look for email entries in this page, please enter text to find. </p>
<form method="post" action="/cgi-bin/pagesearch.pl">

 <input type="hidden" name="page" value="/email/listing.html" />
 <p>Find text:
<input name="pattern" size="20" />
<input type="submit" value="Find All" /> </p>

</form>

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 20

</body>
</html>

The CGI program pagesearch.pl receives the location of the file to search via a hidden form field. The program
pagesearch.pl performs these tasks:

 Opens a given email listing page
 Looks for the form supplied pattern in each line of the page
 Remembers all matching lines
 Outputs the count of lines matched followed by all matching lines
 Reports errors when something is wrong

Let's look at the source code of pagesearch.pl.

#!/usr/bin/perl
search email listing
use CGI qw(:standard);
my $sn_root="/home/httpd/htdocs";
my $reply="", $error = "", $file;
my $page = param('page');
if ($page eq "") {

$error .= "<p>Page to search not specified!</p>";
}
else {

$file = $sn_root . $page;
open(listing, "$file") or $error .= "<p>Can not open $file!</p>";

}
$pt = param('pattern');
if ($pt eq "") {

$error .= "<p>You didn\'t " . "submit any text to find.</p>";
}
if ($error) {

errorReply($error); exit(1);
}
construct reply
outputFile("frontfile");
my $count = 0, $match="";
while (defined($line=<listing>)) ## find matching entries
{

if ($line =~ /$pt/i) {
$count++;
$match .= $line; ## (15)

}
}
close(listing);
$reply .= "<h3 style=\"margin-top: 16px\"> Found $count entries matching $pt</h>";
if ($count > 0) {

$reply .= " $match ";
}
outputFile("backfile");
sendPage($reply);
exit(0);
sub outputFile
{

my($ln, $f);
$f = $_[0];
open(FF, $f) || errMail("failed to open the file $f.");
while ($line=<FF>) {

$reply .= "$line";
}
close(FF);

}
sub sendPage
{

UNIT-V PERL

Ch. Vijayananda Ratnam@Dept. of CSE 21

my $content=$_[0];
my $length=length($content);
print "Content-type: text/html\r\n";
print "Content-length: $length\r\n\r\n";
print $content;

}
sub errorReply
{

my $msg=$_[0];
outputFile("front");
$reply .= "<h3 style=\"margin-top: 16px\"> Error encountered:</h3> $msg";
$reply .= "<p>Please go back and submit your request again.</p>";
outputFile("backfile");
sendPage($reply);

}
Output:

