
                                                                             UNIT II 

          CIRCULAR WAVEGUIDES- MICROSTRIP LINES- CAVITY RESONATORS  

CIRCULAR WAVEGUIDES: 

INTRODUCTION: 

 Circular waveguides are basically tubular circular conductors as shown in Fig 1. 

A hollow metallic tube of uniform circular cross 

section for transmitting electromagnetic waves by 

successive reflections from the inner walls of the 

tube is called circular waveguide. Analysis of circular 

wave guide requires solution of the wave equation 

in cylindrical coordinates (𝜌, 𝜑, 𝑧). The direction of 

propagation is in Z-direction. Maxwell’s equations are also expressed in 

cylindrical coordinates. The electric and magnetic field components along 

ρ and φ i.e., H𝜌, 𝐻𝜑, 𝐸𝜌 𝑎𝑛𝑑 𝐸𝜑 are expressed in terms of the longitudinal 

components EZ and HZ. The relations are as follows: 
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γ
ρ

  
𝜕𝐸𝑧

𝜕𝜑
     +     jωμ 

∂Hz

∂ρ
      Set 1 Equations  

where                   h²  = 𝛾²   +𝜔²𝜇𝜀    and            EQ   2 

The wave equations for Ez and Hz in cylindrical coordinates are given by 

∂²Ez

∂ρ²
    + 

1

ρ²
   
∂²Ez

∂φ²
   +  

1

𝜌
   

∂Ez

∂ρ
  +  

∂²Ez

∂z²
  + 𝜔²𝜇𝜀    Ez   = 0   ....  3    and 

 
∂²Hz

∂ρ²
    + 

1

ρ²
   

∂²Hz

∂φ²
   +  

1

𝜌
   

∂Hz

∂ρ
  +  

∂²Hz

∂z²
  + 𝜔²𝜇𝜀    Hz   = 0 ....  4 

Transverse Electric waves 

Consider the transverse electric waves Ez =0 So EQ 4 is to be considered. 

The boundary condition is the tangential components of electric fields on the 

cylindrical wall are zero.  

We know  
𝜕

𝜕𝑧
 is an operator and is equal to  . Then EQ 4 becomes 

∂²Hz

∂ρ²
    + 

1

ρ²
   
∂²Hz

∂φ²
   +  

1

𝜌
   

∂Hz

∂ρ
  + ( 𝛾²  + ²𝜇𝜀 )  Hz   = 0   

∂²Hz

∂ρ²
    + 

1

ρ²
   
∂²Hz

∂φ²
   +  

1

𝜌
   

∂Hz

∂ρ
  + h² Hz   = 0  ,     .....5 

where h²   =( 𝛾²  + 𝜔²𝜇𝜀 )    

This is a partial differential equation, whose solution can be obtained by 

separation of variables method for which it is assumed  

Hz = P.Q     ........6 
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where P is a function of 𝜌 alone and  Q is a function of 𝜑 alone. 

 EQ 5 becomes when EQ 6 is substituted, 

∂²(PQ )

∂ρ²
    + 

1

ρ²
   
∂²(PQ )

∂φ²
   +  

1

𝜌
   

∂(PQ )

∂ρ
  + h² (PQ)   = 0 

On differentiation, 

Q.
𝑑²𝑃

𝑑𝜌 ² 
   +

𝑃

𝜌²
 
𝑑²𝑄

𝑑𝜑 ²
 + 

𝑄

𝜌
 
𝑑𝑃

𝑑𝜌
   + h² (PQ) = 0 

Multiplying throughout with 
𝜌²

𝑃𝑄
  , we get   

𝜌²

𝑃
.
𝑑²𝑃

𝑑𝜌 ² 
  + 

1

𝑄
 
𝑑²𝑄

𝑑𝜑 ²
 +  

𝜌

𝑃
 
𝑑𝑃

𝑑𝜌
+ h² 𝜌²  = 0  

This can be rearranged as 

𝜌²

𝑃
.
𝑑²𝑃

𝑑𝜌 ² 
   +  

𝜌

𝑃
 
𝑑𝑃

𝑑𝜌
  + h² 𝜌² +   (   

1

𝑄
 
𝑑²𝑄

𝑑𝜑 ²
  ) = 0     .........  7 

  Let   
1

𝑄
 
𝑑²𝑄

𝑑𝜑 ²
   =   - n²,    --------8 where n²  is a constant.  

 Substituting 8 in 7, we get  

𝜌²

𝑃
.
𝑑²𝑃

𝑑𝜌 ² 
   +  

𝜌

𝑃
 
𝑑𝑃

𝑑𝜌
  + (h² 𝜌² - n²)    = 0  

Multiplying throughout    with P, 

ρ².
𝑑²𝑃

𝑑𝜌 ² 
   +  𝜌 

𝑑𝑃

𝑑𝜌
  + P (h² 𝜌² - n²)    = 0     .....9 

EQ 9 can be rewritten as 

(ρh)².
𝑑²𝑃

𝑑(𝜌ℎ)² 
   + ( 𝜌ℎ) 

𝑑𝑃

𝑑(𝜌ℎ)
  + P [(𝜌ℎ)² - n²]    = 0     ...10 
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This is similar to the Bessel equation of the form  

x².
𝑑²𝑦

𝑑𝑥² 
   +  𝑥 

𝑑𝑦

𝑑𝑥
  + ( ² - n²)y    = 0      

whose solution is 

y = Cn Jn  (x)  , where  Jn (x)  represents the nth order Bessel function of first kind 

and Cn is a constant. 

Therefore the solution of equation 10 is 

P = Cn Jn (𝜌ℎ)      ......9 

Also, the general solution of EQ 8 is 

Q = An Sin n𝜑  + Bn.  Cos n𝜑  ....10 

Substituting EQ 9 and EQ 10 in EQ 6, 

Hz = Cn Jn (𝜌ℎ) (An   Sin n𝜑 + Bn    Cos n𝜑  )  ......11 

The constants A and B control the amplitudes of sin n 𝜑  and cos 𝑛𝜑  terms 

which are independent.  

Because of the azimuthal symmetry of circular waveguide, both sine and 

cosine terms are valid solutions. The actual amplitudes of these terms are 

dependent on the excitation of the waveguide. 

From a different view point, the coordinate system can be rotated about the Z 

axis to obtain Hz with either A=0 or B=0. 

 Then we can consider the sinusoidal variation along Z direction with EQ 11 

taking the form of  

Hz  = C0 Jn (𝜌ℎ) Cos n𝜑′    𝑒−𝛾𝑧          ..........12   

  (Adding the variation along Z direction as 𝑒−𝛾𝑧     ) 
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The nth order Bessel function Jn (𝜌ℎ)  of the first kind are plotted in Fig below. 

 

Boundarydary condition: 

All along the surface of the circular waveguide at 𝜌 =a, E 𝜑  = 0 for all values 

of 𝜑 varying between 0 to 2π. 

𝜕𝐻

𝜕𝜌
  =0 at 𝜌 =a   This implies      J’n(ah) =0   .....13 

The prime denotes differentiation with respect to ah. The roots of the equation 

are defined by P’nm so that J’n(P’nm)=0,where the mth root of this equation is 

denoted by P’nm which are the eigen values  given by 

  P’n,m  =ah          .....14 

Or  h = P’n,m /a   .....15 ,( the permissible values of h is given by this equation) 

The equation 12 reduces to 

Hz = C0 J’n (𝜌ℎ) Cos n𝜑′    𝑒−𝛾𝑧         ........16  

  And this equation represents all possible solutions of Hz for TE n, m wave in a 

circular waveguide. Since Jn are oscillatory functions, J’n(ah) are also oscillatory 
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function.  Substituting the value of Hz (EQ 16) in Set 1 Equations , we get the 

field components for TE n,m waves in circular waveguide with h=P’n,m/a as 

given below:    (Zz  (= E𝝆 /H𝝋   or  –E𝝋/H𝝆) the wave impedance in the guide) 

 

 

 

 The roots of Jn’(ah) correspond to maximum and minimum  of the curves 

J’n(ah) . 

The first subscript ‘n’ denotes the number of full cycles of field variations in 

one revolution through 2π radians of 𝜑. 

The second subscript ‘m ‘represents the number of zeros of E𝜑, i.e., Jn’(ah) 

along the radial of waveguide with the exclusion of zero on the axis if it exists. 
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  The values of P’n,m  for TE n,m mode (nth order and mth root) in circular 

waveguide  are given in the table below.  

 

 Table: Values of P’n,m for  TE n,m mode  in circular waveguide 

Field Configurations of TEn,m modes                            ____________ E Lines 

------------ H LInes 

+ inward directed      

Lines 

.  outward directed 

Lines 

 

 

 

 

 

 

 

Transverse Magnetic Modes in circular waveguide 

     The TM modes in circular waveguide are characterised by Hz=0. However, 

the Z component of Electric field E must exist in order to have energy 

transmission in the guide. Consequently the Helmholtz equation for Ez in a 

circular waveguide is given by  
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∂²Ez

∂ρ²
    + 

1

ρ²
   
∂²Ez

∂φ²
   +  

1

𝜌
   

∂Ez

∂ρ
  +  

∂²Ez

∂z²
  + 𝜔²𝜇𝜀    Ez   = 0   ....  3      

The solution for the above equation can be obtained on similar lines as in the 

case of TE wave and the solution comes as 

Ez = C0 Jn (𝜌h) cos n𝜑’ 𝑒−𝛾𝑧       .....17 

The boundary condition is that Ez =0 at 𝜌 =a 

Then, Jn (𝑎h) = 0. 

As Jn(𝑎h) are oscillatory functions ,there are infinite number of roots of Jn( 𝑎h). 

The values of these roots for which Jn (𝑎h) = 0 are called Eigen values and are 

denoted by P n,m where Pn,m = ah. 

Table below gives a few of them for lower order n     

 

 

 

 

 

 

Table :  Values of  Pn,m   for TM n,m mode in circular waveguide 

 

Substituting  Ez (EQ 17) in the set  1 equations, the field components  for  the 

TM n,m modes can be written as: 

Zz   is, the wave impedance as defined earlier.  E𝜑/H𝜌 or - E𝜌/H𝜑 
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The field patterns of TM n,m modes are shown in below Fig. 

(Here n=0,1,2,3 and 

m=1,2,3,4) 

Nature of Fields: 

______ E Lines 

- - - - - H Lines 

+ inward directed        

. outward directed 

Lines     
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The first mode subscript n indicates the number of full wave variations in the 

circumferential direction, while the second subscript relates to the Bessel 

function variations in radial direction. 

The TE11 mode in circular waveguide has similar field patterns as those of TE10 

in square waveguide. In a gradual change of the guide cross section from 

square to circular, the TE10 mode in the square waveguide becomes TE11 mode 

in circular waveguide  

The TM01 mode in circular waveguide is analogous to the TM11 mode in the 

square waveguide. 

 Modes with circular symmetry (TM01 and TE01) are utilized in the design of 

rotary joints. 

When rectangular waveguide is used, the plane of polarisation of the 

propagating wave is uniquely defined. The electric field is directed across the 

narrow dimension of the waveguide. 

When a dual polarisation capability is required especially when a waveguide is 

connected to a circularly polarised antenna, the waveguide must be able to 

propagate both the vertically and horizontally polarised waves. A square 

waveguide has this capacity because a=b and cut off frequencies of TE10 and 

TE01 modes are the same. 

The circular waveguide is the most common form of a dual polarisation 

transmission line. Further, they are used in rotational coupling. For the same 

reason of its circular symmetry, the circular waveguide possesses no 

characteristic that prevents positively the plane of polarisation of the wave 

from rotating about the guide axis as the wave travels. 

Characteristic Equation and Cut Off Wavelength 

h²   =( 𝛾²  + 𝜔²𝜇𝜀 )     and 𝛾 =  ℎ² − 𝜔²𝜇𝜀 

    𝛾 = 𝛼 + 𝑗𝛽   

i.e., 

𝛼 + 𝑗𝛽   = ℎ² − 𝜔²𝜇𝜀   =  h²n, m  − 𝜔²𝜇𝜀   
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For propagation to start, 𝜔²c 𝜇𝜀 = h²n,m so that, 

 fc =hn,m/2π 𝜇𝜀  

  or 𝜆c =   2π/ hn,m     

For TE waves,    

    hnm = P’nm /a   and 𝜆 c  =   2πa/P’ n,m 

The minimum value of P’n,m is 1.841   for n=1 and m=1 for TE waves 

and for minimum value of P’, the cut off wavelength will be maximum.. 

For TM waves, 

 h nm = P nm/a. The minimum value of Pn,m is 2.405 for n=0 &m=1. 

So TM01 mode has the maximum cut off wavelength in TM waves. 

So, TE11 is the DOMINANT MODE in circular waveguides.  

From the Tables, it can be seen that P’ 0,m  =P 1,m 

Then, TE0,m and TM 1,m modes are DEGENERATE MODES. 

 

Phase velocity, Group Velocity, Guide wavelength and Wave Impedance 

 The relations for phase velocity, group velocity and guide wave length remain 

the same as in the case of rectangular waveguide for both TE and TM modes. 

𝜆g  = 
𝜆

 1−( 𝜆
𝜆𝑐

)²
         

𝜐p  = 
𝑐

 1−(
𝜆

𝜆𝑐
)²

   

𝜐g   = c.  1 − (
𝜆

𝜆𝑐
)²          = c.  1 − (

𝑓𝑐

𝑓
)²        



 12 

𝜐p   =  ω/ β    or β   = ω/ 𝜐p  = 2π/ 𝜆g   = (2π/ 𝜆) .  1 −  
𝑓𝑐

𝑓
 

2
       

Z TM = 
𝛽

𝜔𝜖
    =        𝜇𝜀   𝜔2 −  𝜔𝑐

2   /𝜔𝜀        =  𝜇/𝜀  .  1 − (
𝜔𝑐

𝜔
)²              

                           =           𝜇/𝜀     1 − (
𝑓𝑐

𝑓
)²  =𝜂    1 − (

𝜆

𝜆𝑐
)²  = 𝜂 𝜆 / 𝜆g .              

ZTE =   𝜂/  1 − (
𝜆

𝜆𝑐
)²    = 𝜂( 𝜆g / 𝜆)   

Attenuation in Circular Waveguide  

 The attenuation in circular waveguide for TE and TM modes can be 

determined with the following definition in the case of circular waveguide also. 

The attenuation is defined as
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The rapid decrease of attenuation with frequency of TE01 mode is useful for 

long low loss waveguide communication links. But, modes above dominant 

mode TE11 result in mode conversion leading to signal distortion.  

 

Salient Features of Circular waveguides: 

 It is easy to manufacture. 

 They are used in rotational coupling. 

 Rotation of Polarisation exists and this can be overcome by rotating 

modes symmetrically. 

 TM01 mode is preferred to TE 01 mode as it requires a smaller diameter 

for the same cut off wavelength. 

 For f> 10 GHz, TE01 has the lowest attenuation per unit length of the 

waveguide.  

  TE01 has no practical application 

 The main disadvantage is that its cross-section is larger than that of a 

rectangular waveguide for carrying the same signal. 
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 The space occupied by circular waveguide is more than that of a 

rectangular waveguide. 

 The determination of fields consists of differential equations of certain 

type, whose solutions involve Bessel Functions. 

 It has the advantage of greater power handling capacity and lower 

attenuation for a given cut off wavelength. 
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                                               CAVITY RESONATORS  

 

       When one end of the waveguide is terminated with a shorting plate, there 

will be reflections causing standing waves. When another shorting plate is kept 

at a distance of multiples of 𝜆g /2, then the hollow space so formed can 

support a signal that bounces back and forth between the two shorting plates. 

This results in resonance. The hollow space is called cavity and the 

arrangement so done is called cavity resonator. 

 

   

 

 

 

 

  In general, a cavity resonator is a metallic enclosure that confines the 

electromagnetic energy. The stored electric and magnetic energies inside the 

cavity determine its equivalent inductance and capacitance. The energy 

dissipated due to the finite conductivity of the cavity walls determines the 
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equivalent resistance. The metallic enclosure may be a circular or rectangular 

waveguide sections with shorting plate closing at both ends (Fig above).  

 

     A resonator can have an infinite number of resonant modes theoretically, d 

each mode corresponding to a definite resonant frequency. When the 

frequency of an impressed signal is equal to a resonant frequency, maximum 

amplitude of standing wave occurs and the peak energies stored in electric and 

magnetic fields are equal. The mode having the lowest resonant frequency is 

known as the DOMINANT MODE 

 

Expression for Resonant Frequency 

  RECTANGULAR WAVEGUIDE, 

h²   = ( 𝛾²  + 𝜔²𝜇𝜀 )      = (𝑚𝜋 𝑎 )² + ( 𝑛𝜋 𝑏  ) ²    ........1 

𝜔²𝜇𝜀 = (𝑚𝜋 𝑎 )² + ( 𝑛𝜋 𝑏  ) ² - 𝛾²                     ..............2 

For wave propagation to occur       𝛾 = j𝛽              .....3 

Using 3 in 2 we get, 

𝜔²𝜇𝜀 =(𝑚𝜋 𝑎 )² + ( 𝑛𝜋 𝑏  ) ² +𝛽²    .............................4 

For a wave to exist in a cavity resonator, there must be a phase change 

corresponding to a given guide wavelength. 

 𝛽 𝜆g = 2π   or  

 𝛽 = π /( 𝜆g /2).                                 .......5 
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The distance between the shorting plates, say, d should be multiples of 𝜆g/2 in 

order to form the standing waves. . i.e., 

d= p. 𝜆g /2       .......6.  

Substituting the value of 𝜆g /2  as d/p(from Eq 6) in  Eq   5, 

𝛽  =p π /d     .....7.    

where,  p is an integer 

This is the condition for resonance and the resonant frequency 𝜔o is given by 

the Eq 4, after substituting 𝜔o for 𝜔 and 𝛽  =p π /d as 

𝜔ₒ²𝜇𝜀 = (𝑚𝜋 𝑎 )² + ( 𝑛𝜋 𝑏  ) ² + (p π /d) ²          ........8. 

Or       fₒ =  
𝑐

2
 (𝑚𝜋 𝑎 )² + ( 𝑛𝜋 𝑏  ) ² + (p π /d) ²    ....9. 

General mode of propagation in a cavity resonator is TE m,n,p  or TM m,n,p. For 

both TE and TM modes the resonant frequency is the same in rectangular 

waveguide cavity resonators. 

    CIRCULAR CAVITY RESONATOR 

  To short both ends circular end plates are used. Let ‘a’ be the radius of the 

circular waveguide and‘d’ be the length of the waveguide. The condition for 

resonance is 𝛽  =p π /d, as detailed above. 

For circular waveguide section, 

h²   =( 𝛾²  + 𝜔²𝜇𝜀 )   

 or    h²-  𝛾2 =  𝜔²𝜇𝜀 

 or    h²+ 𝛽² = 𝜔ₒ2𝜇𝜀  ,  applying condition for resonance 
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        h² + (p π /d)²  =  𝜔ₒ²𝜇𝜀       For TM nm waves,  h nm = P nm/a.  

.                                                          For TE nm waves, h nm = P’ nm/a 

fₒ    =  
𝑐

2𝜋
  h² nm +  (p π /d)²                                        ......10 

For TM nm waves, h nm = P nm/a 

fₒ    =  
𝑐

2𝜋
 (P nm/a)²   +  (p π /d)²                               ......11 

For TE nm waves, h nm = P’ nm/a 

fₒ    =  
𝑐

2𝜋
 (P′ nm/a)² +  (p π /d)²                           ...........12 

 

 

FIELD EXPRESSION for TM   modes in Cavity Resonators: 

Rectangular cavity Resonator 

TM mode  

The field expression for TM (Hz =0) wave is 

Ez = K Sin [( 𝑚𝜋 𝑎  ) x .Sin (nπ/b) y] 𝑒𝑗𝜔𝑡 −𝛾𝑧 ,     ........................1.                                                   

when the wave is propagating along + direction. 

For the return wave i.e., for the wave propagating in – Z direction, EQ 1 

becomes 

Ez = K Sin [( 𝑚𝜋 𝑎  ) x .Sin (nπ/b) y] 𝑒𝑗𝜔𝑡 +𝛾𝑧               ........2. 
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As the waves propagate 𝛾 may be replaced by j 𝛽. Adding the fields of the two 

waves, Ez = K Sin [( 𝑚𝜋 𝑎  ) x .Sin (nπ/b) y] 𝑒𝑗 (𝜔𝑡 ±β𝑧)              ......3     

Let A+ and A-   be the amplitude constants of onward and backward waves 

respectively. 

Then Ez  = (A+ .𝑒−𝑗𝛽𝑧  + A- 𝑒+𝑗𝛽𝑧  ) K Sin [( 𝑚𝜋 𝑎  ) x .Sin (nπ/b) y]     ....    4. 

Boundary condition is Ez =0 at z = 0 and at z=d. This can happen only when A+ 

and A- are equal (= A,say). Then EQ 4 becomes 

Ez = A (𝑒−𝑗𝛽𝑧  + 𝑒+𝑗𝛽𝑧  ) K Sin [( 𝑚𝜋 𝑎  ) x .Sin (nπ/b) y] 𝑒𝑗𝜔𝑡  

 =2A cos 𝛽𝑧  K Sin [( 𝑚𝜋 𝑎  ) x .Sin (nπ/b) y] 𝑒𝑗𝜔𝑡          ............5 

Ez =2KA Cos 𝛽𝑧  Sin ( 𝑚𝜋 𝑎  ) x .Sin (nπ/b) y   𝑒𝑗𝜔𝑡      ........6 

At x=0,x=a,y=0 and y=b, Ez =o  also the tangential component of Ez i.e., 
𝜕Ez

𝜕𝑧
  = 0 

at z=0 and z=d. 

Differentiating EQ  6 w r t z, 

0= C sin 𝛽𝑑 Sin ( 𝑚𝜋 𝑎  ) x .Sin (nπ/b) y   𝑒𝑗𝜔𝑡        at z=d   

To make sin 𝛽𝑑 =0 ,  𝛽𝑑   = p π   or  𝛽 = p π /d.       .....7 

Substituting EQ 7 in EQ  6, 

Ezmnp = C Sin ( 𝒎𝝅 𝒂  ) x .Sin (nπ/b) y   Cos (𝐩 𝛑 /𝐝)𝒛  .𝒆𝒋𝝎𝒕−𝜸𝒛  ,  

where   m=o,1,2, 3  ....   Represents number of half cycles in x direction, 

               n= 0,1,2,3......   Represents number of half cycles in y direction, 

and       p= 0,1,2,3......    Represents number of half cycles in z direction. 
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TE Mode  

For TE wave Ez =0 and Hz = K     Cos 
𝑚𝜋

𝑎
x . Cos

𝑛𝜋

𝑏
y    𝑒𝑗𝜔𝑡 −𝛾𝑧                    ......1 

For the waves travelling both ways, with 𝛾 = 𝑗𝛽, the equation changes to 

Hz = K     Cos 
𝑚𝜋

𝑎
x . Cos

𝑛𝜋

𝑏
y    𝑒𝑗𝜔𝑡 ±𝛽𝑧  

   =( A+  .𝑒−𝑗𝛽𝑧   + A- 𝑒+𝑗𝛽𝑧    ) K     Cos 
𝑚𝜋

𝑎
x . Cos

𝑛𝜋

𝑏
y       𝑒𝑗𝜔𝑡       .......2 

We know, Ey=       - 
𝛾

ℎ²

𝜕𝐸𝑧  

𝜕𝑦
+  

j𝜔𝜇

h²
 
𝜕𝐻𝑧

𝜕𝑥
  =  

j𝜔𝜇

h²

𝜕𝐻𝑧

𝜕𝑥
 since Ez =0  ...3 

 Ey = 
j𝜔𝜇

h²
 K[( A+  .𝑒−𝑗𝛽𝑧   + A- 𝑒+𝑗𝛽𝑧    )(-mπ/a)( sin 

𝑚𝜋

𝑎
x . Cos

𝑛𝜋

𝑏
y) 𝑒𝑗𝜔𝑡  .....4 

Since Ey =0 at z=0 and z=d, 

  ( A+  .𝑒−𝑗𝛽𝑧   + A- 𝑒+𝑗𝛽𝑧    ) =0     ....5 

We choose      A+ = -A-   ( to make Ey =0 )   ......6 

It is merely necessary to choose the harmonic functions in Z to satisfy the 

boundary condition of zero tangential E at the remaining two end walls 

Substituting 6 in 5, 

A+  .(𝑒−𝑗𝛽𝑧   -  𝑒+𝑗𝛽𝑧   )   = 0 

 i.e., 2j  A+  Sin β𝑧  =0 at z=d    

Sin βd   =  0   βd  = 0 or pπ   or β = pπ /d      .......................................5 

Then, Hz =  K   𝐂𝐨𝐬 
𝒎𝝅

𝒂
𝐱 . 𝐂𝐨𝐬

𝒏𝝅

𝒃
𝐲   sin 

𝒑𝝅

𝒅
 z  𝒆𝒋𝝎𝒕−𝜸𝒛 
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Circular cavity resonators 

TE MODE: 

We have    Hz = C0 Jn (𝜌ℎ) Cos n𝜑′   𝑒𝑗𝜔𝑡 −𝛾𝑧  

The combined field equation for propagation to and fro is 

Hz = Cn Jn (𝜌ℎ) Cos n𝜑′    𝑒𝑗 (ωt±β𝑧)  

Hz=( A+  .𝑒−𝛽𝑧   + A- 𝑒+𝛽𝑧  )   C0 Jn (𝜌ℎ) Cos n𝜑′    𝑒𝑗𝜔𝑡  

Since Hz cannot be made equal to zero.. 

E𝜑 and E𝜌 can be made equal to zero and to make E𝜑 and E𝜌 vanish at z=0 

and z=d We choose A+=  A- 

Then the factor (A+  .𝑒−𝛽𝑑   - A+ 𝑒+𝛽𝑑    ) =-2j A+ sin 𝛽d 

For sin 𝛽d to become zero 𝛽d =pπ. Then 𝛽 =pπ /d, where p=1,2,3,4.... 

Then, 

Hz = Cn Jn (𝝆𝒉) Cos n𝝋′    sin (pπ /d)z   𝒆𝒋(𝝎𝒕−𝜷𝒛)  

where 

 n=0,1,2,3.......is the number of full cycle variations in azimuthal 𝜑 direction 

m=1,2,3,4......is the number of full cycle variations in radial 𝜌 direction 

p=1,2,3,4.....is the number of half cycle variations in axial Z direction. 
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TM Mode: 

We have  Ez = Cn J’n (𝜌ℎ) Cos n𝜑′    𝑒𝑗 (ωt−β𝑧) 

The combined wave form is 

Ez = Cn J’n (𝜌ℎ) Cos n𝜑′    𝑒𝑗 (ωt±β𝑧)  

Ez ==( A+  .𝑒−𝛽𝑧   + A- 𝑒+𝛽𝑧  )  Cn J’n (𝜌ℎ) Cos n𝜑′  𝑒𝑗𝜔𝑡  

To make Ez = 0 t z=0 and Z=d, we choose A+= - A-  

0 = A+ ( .𝑒−𝛽𝑧   -  𝑒+𝛽𝑧  )  Cn J’n (𝜌ℎ) Cos n𝜑′  𝑒𝑗𝜔𝑡  

( .𝑒−𝛽𝑧   -  𝑒+𝛽𝑧  )   =-2j sin 𝛽z 

But at Z=0 and z=d, Ez =0 

0 = 2j A+ [Cn J’n (𝜌ℎ) Cos n𝜑′  𝑒𝑗𝜔𝑡 ] sin𝛽d 

This can be zero only when sin𝛽d = 0  i.e., 𝛽d =pπ  or 𝛽 =
pπ

d
 where p =1,2,3,... 

Then, Ez = Cn J’n (𝝆𝒉) Cos n𝝋′𝑺𝒊𝒏(
𝐩𝛑

𝐝
 z)  𝒆𝒋(𝛚𝐭−𝛄𝒛) To Summarise, 

Expressions for resonant frequency of a cavity resonator 

Rectangular Cavity Resonator ( same  for TEmnp and TMmnp Modes 

 fₒ =  
𝒄

𝟐
 (𝒎𝝅 𝒂 )² + ( 𝒏𝝅 𝒃  ) ² +  (𝐩 𝛑 /𝐝) ²     

Circular cavity resonator 

fₒ    =  
𝒄

𝟐𝝅
 (𝐏′ 𝐧𝐦/𝐚)² +  (𝐩 𝛑 /𝐝)²        For TEnmp mode 

fₒ    =  
𝒄

𝟐𝝅
 (𝐏 𝐧𝐦/𝐚)²   +  (𝐩 𝛑 /𝐝)²      For TMnmp mode 



 23 

Expressions For Field Equations 

Rectangular cavity resonator  

Hzmnp =  K   𝐂𝐨𝐬 (
𝒎𝝅

𝒂
)𝐱 .𝐂𝐨𝐬(

𝒏𝝅

𝒃
)𝐲   sin( 

𝒑𝝅

𝒅
 )z  𝒆𝒋𝝎𝒕−𝜸𝒛       for TEmnp mode 

Ezmnp = K Sin ( 
𝒎𝝅

𝒂
 ) x .Sin (

𝒏𝝅

𝒃
) y   Cos (

𝒑 𝝅

𝒅
)𝒛  .𝒆𝒋𝝎𝒕−𝜸𝒛  for TMmnp mode  

where   m=o,1,2, 3  ....   Represents number of half cycles in x direction, 

               n= 0,1,2,3......   Represents number of half cycles in y direction, 

and       p= 0,1,2,3......    Represents number of half cycles in z direction. 

 

Circular cavity resonator 

Hz = Cn Jn (𝝆𝒉) Cos n𝝋′    sin (pπ /d)z   𝒆𝒋(𝝎𝒕−𝛄𝒛)    for TEnmp mode 

Ez = Cn J’n (𝝆𝒉) Cos n𝝋′𝑺𝒊𝒏(
𝐩𝛑

𝐝
 z)  𝒆𝒋(𝛚𝐭−𝛄𝒛)     for TMnmp mode 

where 

 n=0,1,2,3.......is the number of full cycle variations in azimuthal 𝜑 direction 

m=1,2,3,4......is the number of full cycle variations in radial 𝜌 direction 

p=1,2,3,4.....is the number of half cycle variations in axial Z direction. 

     

In the rectangular cavity resonator, dominant mode is TE101 mode for a>b<d   

In circular cavity resonator, TM110 mode is dominant mode where 2a>d and 

TE111 mode is dominant mode when d ≥  2a   
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Q factor and coupling Coefficients: 

The quality factor Q is a measure of the frequency selectivity of a resonant or 

anti resonant circuit. It is defined as  

Q = 2π
maximum  energy  stored

energy  dissipated  per  cycle
    =

𝜔𝑊

𝑃
            ......1 

where W is the maximum energy stored and P is the energy power loss.² 

At resonant frequency, the electric and magnetic energies are equal and in 

quadrature. When the electric energy is maximum the magnetic energy is zero 

and vice versa. So, the total energy stored in the resonator is obtained by 

integrating the energy density over the volume of the resonator. 

We   =  
𝜀

2
E ² 𝑑𝑣  = Wm = 

𝜇

2
H ²𝑑𝑣  =W,                                 ...........2 

where We is the electrical energy ,Wm is the magnetic energy , H   𝑎𝑛𝑑 E  𝑎re 

the peak values of  magnetic and electrical field intensities. 

The average power loss in the resonator can be evaluated by integrating the 

power density 
1

2
 H ² Rs over the inner surface of the resonator. (Rs= 

𝜇𝜔

2𝜍
 , is 

the surface resistance) 

 P = 
Rs

2
 |𝐻𝑡 | ² da         ............3 

where Ht  is the peak value of the tangential magnetic field intensity and Rs is 

the surface resistance of the resonator.     

Substituting 2 and 3 in 1, 

Q =  
𝜔  

𝜇

2
H ²𝑑𝑣

Rs

2
 |𝐻𝑡  | ² da         

   =  
𝜇ω  H ² 𝑑𝑣

𝑅s  tH ² 𝑑𝑎
                .......4 
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Since the peak value of the magnetic intensity is related to its tangential and 

normal components, H ² = tH ² + nH ², where Hn is the peak value of the 

normal magnetic field intensity. The value of tH ² at the resonator walls is 

approximately equal to twice the value H ² averaged over the volume. 

So, the Q of a cavity resonator as given by EQ 4 can be expressed 

approximately by  

Q = 𝜔𝜇(Vol)/2Rs(surface area)    .............5 

An unloaded resonator can be represented by either a series or a parallel 

resonant circuit. The resonance frequency fₒ and the unloaded Q factor Qₒ of a 

cavity resonator are  

fₒ   =   1/2π 𝐿𝐶         .................6 

and  Qₒ   = L𝜔ₒ/R                         .......7 

If the cavity is coupled by means of an ideal  N:1 transformer and a series 

inductance Ls to a generator having an internal impedance Zg, then the 

coupling circuit and its equivalent appear to be as follows.   

 

 

 

 

 

   A. Coupling Circuit                                     b. Equivalent Circuit  
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The loaded QL of the system is given by 

QL = L𝜔ₒ/ (R+ N²Zg +N²Ls)   = L𝜔ₒ/ (R+ N²Zg)  as|N²Ls| << |R+N²Zg| 

This can be written as QL = L𝜔ₒ/R(1+ N²Zg/R)    ......8 

The coupling coefficient of the system is defined as 

K = N²Zg/R        ......9 

And the loaded QL would become 

QL   = L𝜔ₒ/R(1+K)  =  Qₒ/(1+K)      .....10 

Rearranging EQ 10,  

1/QL =( 1/Qₒ) +(1/Qext)      .....11 

Where Q ext = Qₒ /K = L 𝜔ₒ/ KR is the external Q 

There are three types of coupling coefficients. 

1. Critical Coupling:  If the resonator is matched to generator, then K=1....12        

Then, the loaded QL is given by     (from EQ 10)             QL = 
1

2
  Qₒ        ..........13 

2. Over Coupling: If K>1, the cavity terminals are at voltage maximum in the 

input line at resonance. The normalised impedance at the voltage maximum is 

the standing wave ratio    𝜌.                                                     K = 𝜌       ...........14  

The Loaded QL is given by                                               QL = Qₒ/ (1+ 𝜌)        ....15 

3. Under Coupling:   If K<1, the cavity terminals are at a voltage minimum and 

the input terminal      impedance is equal to the reciprocal of the standing wave 

ratio 𝜌      i.e., K= 1/ 𝜌                      .........16     Then QL = 
𝜌

𝜌+1
  Qₒ          ........17 



 27 

 The relationship of coupling coefficient and the standing wave ratio is shown 

in the Fig  

The unloaded 

quality factor Qₒ 

of a cavity 

resonator can be 

defined in 

different ways, 

such as, 

Qₒ  = (Volume of the cavity) /  (skin depth ) X(surface area of the cavity).  Or, 

Qₒ = Cross sectional area of the cavity /( Skin depth) X (periphery of the cavity). 

Thus the Q factor of a cavity can be increased by increasing the size of the 

cavity or conductivity of the walls or by decreasing the coupling into the cavity. 

Q also increases with an increase in frequency as skin depth decreases with 

frequency. 

Q of a circular cavity resonator is given by 

 Q=   
1

2
 

1

Rs
 
𝛽²  

𝜔
[
𝑎𝑐

𝑎+𝑐
], where 𝜔 is the angular frequency, Rs  is surface 

resistance, a is radius and c is the wall length of the circular cavity resonator. 

These cavity resonators are used widely at frequencies above 3 GHz. The 

quality of these resonators can be quite high at microwave frequencies with 

typical values of unloaded Q ranging from 5000 to 50,000. 
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EXCITATION TECHNIQUES- Waveguides and Cavities: 

In general, the field intensities of desired mode in a waveguide can be 

established by means of a probe or loop coupling devices. 

The probe may be called a monopole antenna. The coupling loop may be called 

a loop antenna. 

A probe should be located so as to excite the electric field intensity or a 

coupling loop should be located so as to generate the magnetic field intensity 

for a desired mode. 

A device that excites a given mode in the guide can also serve reciprocally as a 

receiver or collector of energy of that mode. 

EXCITATION OF MODES IN RECTANGULAR WAVEGUIDES: 

     The methods 

of excitation for 

various modes in 

rectangular 

waveguides are 

shown in Figure. 
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In order to excite a TE10 mode in one direction of the guide, the two exciting 

antennas should be arranged in such a way that the field intensities cancel 

each other in one direction and reinforce in the other. Figure shows a method 

to launch a TE10 mode in one direction. The two antennas are placed a quarter 

wave length apart and their phases are in time quadrature. Phasing is 

compensated by use of additional quarter wavelength section of line 

connected to the antenna feeders. 

 

 

 

 

 

 

 

The field intensities radiated by the two antennas are in phase opposition to 

the left of the antenna and cancel each other, whereas in the region to the 

right of the antenna, the field intensities are in time phase and reinforce each 

other. The resulting wave thus propagates to the right in the guide. 

Some higher order modes may form due to discontinuities, but they get 

attenuated. The dominant mode tends to remain the same even when the 

waveguide is large enough to support the higher modes.  
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EXCITATION OF MODES IN CIRCULAR WAVEGUIDES: 

TE modes have no Z component of electric field and TM modes have no Z 

component of magnetic field intensity. If a device is inserted in a circular 

waveguide in such a wave as to excite only a Z component of electric field, the 

wave propagating through the guide will be TM mode: on the other hand, if a 

devise is placed in a circular waveguide in such a manner so as to excite Z 

component of magnetic field intensity, the wave propagating will be TE mode. 

The methods of excitation for various modes in circular waveguides are shown 

in Figure. 

 

 

 

 

A common way to excite TM modes in circular waveguide is by a coaxial line. 

At the end of the coaxial wire a large magnetic intensity exists in 𝜑  direction 

of wave propagation. The magnetic field from coaxial line will excite the TM 

modes in the guide.       
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EXCITING WAVE MODES IN RESONATOR: 

 In general a straight –wire probe inserted at the position of maximum electric 

intensity is used to excite a desired mode, and loop coupling placed at the 

position f maximum magnetic intensity is utilised to excite a specific mode.  

 

 

 

 

 

The figure shows the method of excitation for the rectangular resonator. The 

maximum amplitude of standing wave results when the frequency of the 

impressed signal is equal to the resonant frequency. 
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   MICRO STRIP LINES: 

  INTRODUCTION: 

 Strip lines are essentially modifications of to wire lines and coaxial lines. They 

are basically planar transmission lines widely used at frequencies 100MHz to 

100 GHz.  

A central conducting thin strip of width w and thickness t is placed inside low 

loss dielectric 

substrate(Er). The 

substrate is between two 

metallic ground plates, 

the width of the ground 

plates being five times 

the spacing ‘b’ between 

them. (w>t) 

The dominant mode is TEM mode. For b< 𝜆/2, there will be no wave 

propagation in transverse direction. The field configuration in the strip line is 

shown in the Fig below. 
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MICRO STRIP LINES 

Before the advent of monolithic microwave integrated circuits(MMIC), parallel 

striplines and wave guides were much in use. Later the microstrip lines are in 

extensive use as hey provide one free and accessible surface on which the solid 

state devices can be placed. 

The microstrips are also called open striplines or surface waveguides. 

A microstrip line is an unsymmetrical strip line but a parallel plate transmission 

line having dielectric substrate, one face of which is metallised ground and the 

other has a thin conducting strip of certain width w and thickness t In this the 

top ground plate is absent but sometimes a cover plate is used to shield the 

microstrip line without affecting the field lines. 

Microstrips are used extensively to interconnect high speed logc circuits in 

digital computers because they can be fabricated by automated techniques 

and they provide the required uniform signal paths. 

Microstrip line consists of a conduction ribbon attached to a dielectric sheet 

with conductive backing. 

FIELD PATTERN:   Modes on the stripline are quasi-TEM modes. 
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The theory of TE or TM coupled lines applies as an approximation only. The 

approximate field distribution is shown in the above Fig in b, where as  a is the 

schematic diagram of the microstrip line. 

The distribution of the electric field lines indicates that the E lines approach air-

dielectric interface obliquely. And thus there are at least two components of 

electric field. Since the tangential component of electric field is continuous at 

the air- dielectric interface, the tangential component of displacement density 

becomes discontinuous. 

(∇ × 𝐻)𝓍 air   ≠ (∇ × 𝐻)𝓍 dielectric ,      .....1 

where direction 𝓍 is tangential to dielectric surface and perpendicular to the 

strip conductor. For TEM wave Hz =0. Then , EQ 1 gives  

  𝜕𝐻𝓎

𝜕𝑧
air    ≠   

  𝜕𝐻𝓎

𝜕𝑧
dielectric ,        or 

Hy air    ≠  𝐻𝑦 dielectric     ........2 

The inequality in EQ 2 violates the field matching conditions for the normal 

components of magnetic field.( Y direction is normal to the strip and substrate 

and the wave propagation is along Z direction) 

This implies that Hx should be a non zero quantity for EQ 1 to be satisfied. This 

leads to the conclusion that a pure TEM wave cannot be supported by a 

microstrip line. 

However, since the major portion of electric field lines is concentrated below 

the strip, the electric flux crossing the air-dielectric boundary is small. 

Therefore the deviation from the TEM mode is small and may be ignored for 

most of the circuit design applications. 
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Advantages and Disadvantages of Microstrip Lines 

1. Substrates of high dielectric constant are advantageous since they reduce 

the phase velocity and guide wavelength and consequently the circuit 

dimensions also. 

2. Complete conductor pattern may be deposited on a single dielectric 

substrate which is supported by a single metal ground plane. Fabrication costs 

would be substantially less than those of coaxial, waveguide or stripline 

circuits. 

3. Because of easy access to the top surface, it is easy to mount any passive or 

active discrete devices and also for making minor adjustments after 

fabrication.  Access will be there for probing and measurement purposes. 

4. Due to planar nature of micro strip structure, both packaged and 

unpackaged semiconductor chips can be conveniently attached to the micro 

strip element. 

5. Radiation loss in micro strip lines particularly at discontinuities like corners, 

short circuit posts etc may be reduced considerably by the use of thin and high 

dielectric materials to ensure the fields confined near the strip. 

Because of proximity of the air-dielectric-air interface with the micro strip 

conductor, at the interface a discontinuity in the electric and magnetic fields is 

generated. This results in a micro strip configuration that becomes a mixed 

dielectric transmission structure with impure TEM modes propagating. This 

makes the analysis complicated. 
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Characteristic Impedance Zₒ 

The characteristic impedance of a micro strip line i a function of the strip line 

width, thickness, the distance between the line and the ground and the 

homogeneous dielectric constant of the board material. 

Taking the equation of the characteristic impedance of a wire over ground 

transmission line, an indirect or comparative method is evolved for Zₒ of the 

micro strip line. 

 

a. Cross-section of Micro strip line 

 

 

 

 

 

b. Cross- section of wire –over-ground line 

 

The characteristic impedance of a wire –over-ground line is given by 

Zₒ  = (60/𝜺r )  ln  
𝟒𝒉

𝒅
      for h>>d     ......1 

Where 𝜺r is the dielectric constant of the ambient medium, h is the height of 

the centre of wire to the ground and d is the diameter of the wire. 
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Effective dielectric constant: 

For a homogeneous dielectric medium, the propagation delay time Td  per unit 

length is given by 

  Td = 𝜇𝜀   (𝜇 𝑎𝑛𝑑 𝜀 are permeability and permittivity of the medium) 

In free space Td =1.016 𝜀𝔯  

The effective relative dielectric constant ε re can be related to the relative 

dielectric constant of the board material εr . The empirical equation is given by 

ε re   = 0.475  εr   +  0.67       .......2 

The cross section of micro strip line is rectangular and this rectangular 

conductor must be transferred into an equivalent circular conductor. The 

empirical relation of this transformation is given by 

D= 0.67 w (0.8 + 
𝑡

𝑤
  )   ..............3. 

where d is the diameter of the wire over ground, w is the width of the micro 

strip line and t is the thickness of the micro strip line, provided  t/w should lie 

between 0.1 and 0.8   

Substituting 2 for dielectric constant and 3 for equivalent diameter in 1, 

Zₒ  = 
𝟖𝟕

 εr+1.41
    ln  

tw

h

8.0

98.5
   ......4        (for h < 0.8w) 

EQ 4 is the equation of characteristic impedance for a narrow micro strip line. 

The characteristic impedance for a wide micro strip line is expressed as 

Zₒ   = 
𝟑𝟕𝟕

 εr
  
𝒉

𝒘
      (for w>>h)   .....5 
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Losses in Micro strip Lines 

The attenuation constant of the dominant mode of the micro strip line 

depends on geometric factors, electrical properties of substrate and 

conductors and the frequency. 

For non magnetic dielectric substrate, there occur two types of losses, one due 

to dielectric in the substrate and another due to ohmic skin loss in the strip 

conductor and the ground plate. 

Dielectric Losses 

When the conductivity of a dielectric cannot be neglected, the electric and 

magnetic fields in the dielectric are no longer in time phase. 

The intrinsic impedance of dielectric is given by 

𝜂  =  
𝑗𝜔𝜇

𝜍+𝑗𝜔𝜀
   =   

𝜇

𝜀
  (1-j

𝜍

𝜔𝜀
) -1/2     ......1 

And propagation constant  𝛾 =  𝑗𝜔𝜇(𝜍 + 𝑗𝜔𝜀)  = j𝜔 𝜇𝜀 (1-j
𝜍

𝜔𝜀
 )1/2 .......2  

The term 𝜍/𝜔𝜀 is referred to as the loss tangent and is defined by 

Tan𝜃  = 𝜍/𝜔𝜀    ....3 

If  𝜍/𝜔𝜀 << 1, the propagation constant can be calculated by the binomial 

expansion as   

𝛾 = j𝜔 𝜇𝜀 -  j𝜔 𝜇𝜀 (-j
𝜍

2𝜔𝜀
 ) = j𝜔 𝜇𝜀 - 

𝜍

2
 

𝜇

𝜀
   .........4 

From the equation 4, the attenuation part is 
𝜍

2
 

𝜇

𝜀
  which is the dielectric 

attenuation constant, 𝛼d.  
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 𝛼d  = 
𝜍

2
 

𝜇

𝜀
        Np/cm            .......5     

  𝜍 is the conductivity of dielectric substrate 

From 3 and 5, eliminating𝜍, 

𝛼d   =  
𝜔

2  𝜇𝜀  tan𝜃   Np/cm     ......6   or  𝛼d =4.34𝜔 𝜇𝜖  tan𝜃  dB/cm    ......7 

Ohmic Losses: 

In micro strip line over a low loss dielectric substrate, the predominant sources 

of losses at microwave frequencies are the non perfect conductors. The 

current density in the conductors of a micro strip line is concentrated in a 

sheet that is approximately a skin depth thick inside the conductor surface and 

exposed to the electric field. Further, the current density in the strip conductor 

and ground conductor is not uniform in the transverse plane. This attenuation 

in the conductor is given by 𝛼c equal to 

𝛼c = 
8.686 Rs

𝐙ₒ𝐰
    dB/cm   for     w/h >1, where  Rs is the surface resistance given 

by 
𝜋𝑓𝜇

𝜍
  = 1/𝛿𝜍 where 𝛿 is the skin depth (= 

1

 𝜋𝑓𝜇𝜍
) 

 Radiation Losses 

The radiation loss depends upon the substrate’s thickness and dielectric 

constant as well as its geometry. The radiation factor decreases with increasing 

substrate dielectric constant. The radiation loss decreases when characteristic 

impedance increases 


