
8086 ARCHITECTURE MICROPROCESSORS &INTERFACING

8086 ARCHITECTURE
8086 Features

 16-bit Arithmetic Logic Unit

 16-bit data bus

 20-bit address bus – 1,048,576 = 1 meg

 16 I/O lines so it can access 64K I/O ports

 16 bit flag

 It has 14 -16 bit registers

 Clock frequency range is 5-10 MHZ

 Designed by Intel

 Rich set of instructions

 40 Pin DIP, Operates in two modes

8086 ARCHITECTURE MICROPROCESSORS &INTERFACING

The address refers to a byte in memory. In the 8086, bytes at even addresses come in

on the low half of the data bus (bits 0-7) and bytes at odd addresses come in on the upper

half of the data bus (bits 8-15).The 8086 can read a 16-bit word at an even address in one

operation and at an odd address in two operations. The least significant byte of a word on

an 8086 family microprocessor is at the lower address.

The 8086 has two parts, the Bus Interface Unit (BIU) and the Execution Unit

(EU).The BIU fetches instructions, reads and writes data, and computes the 20-bit

address. The EU decodes and executes the instructions using the 16-bit ALU.

The BIU contains the following registers:

 IP - the Instruction Pointer

 CS - the Code Segment Register

 DS - the Data Segment Register

 SS - the Stack Segment Register

 ES - the Extra Segment Register

The BIU fetches instructions using the CS and IP, written CS: IP, to construct the 20-

bit address. Data is fetched using a segment register (usually the DS) and an effective

address (EA) computed by the EU depending on the addressing mode.

The EU contains the following 16-bit registers:

 AX - the Accumulator

 BX - the Base Register

 CX - the Count Register

 DX - the Data Register

 SP - the Stack Pointer

 BP - the Base Pointer

 SI - the Source Index Register

 DI - the Destination Register

8086 ARCHITECTURE MICROPROCESSORS &INTERFACING

These are referred to as general-purpose registers, although, as seen by their names,

they often have a special-purpose use for some instructions. The AX, BX, CX, and DX

registers can be considered as two 8-bit registers, a High byte and a Low byte. This

allows byte operations and compatibility with the previous generation of 8-bit processors,

the 8080 and 8085. The 8-bit registers are:

 AX --> AH,AL

 BX --> BH,BL

 CX --> CH,CL

 DX --> DH,DL

The ALU performs all basic computational operations: arithmetic, logical, and

comparisons. The control unit orchestrates the operation of the other units. It fetches

instructions from the on-chip cache, decodes them, and then executes them. Each

instruction has the control unit direct the other function units through a sequence of steps

that carry out the instruction's intent. The execution path taken by the control unit can

depend upon status bits produced by the arithmetic logic unit or the floating-point unit

(FPU) after the instruction sequence completes. This capability implements conditional

execution control flow, which is a critical element for general-purpose computation.

ES

CS

SS

DS

IP

AH

BH

CH

DH

AL

BL

CL

DL

SP

BP

SI

DI

FLAGS

AX

BX

CX

DX

Extra Segment

Code Segment

Stack Segment

Data Segment

Instruction Pointer

Accumulator

Base Register

Count Register

Data Register

Stack Pointer

Base Pointer

Source Index Register

Destination Index Register

BIU registers
(20 bit adder)

EU registers
16 bit arithmetic

ES

CS

SS

DS

IP

AH

BH

CH

DH

AL

BL

CL

DL

SP

BP

SI

DI

FLAGS

AX

BX

CX

DX

Extra Segment

Code Segment

Stack Segment

Data Segment

Instruction Pointer

Accumulator

Base Register

Count Register

Data Register

Stack Pointer

Base Pointer

Source Index Register

Destination Index Register

BIU registers
(20 bit adder)

EU registers
16 bit arithmetic

http://www.answers.com/topic/florida-public-utilities-co

8086 ARCHITECTURE MICROPROCESSORS &INTERFACING

Most of the registers contain data/instruction offsets within 64 KB memory segment.

There are four different 64 KB segments for instructions, stack, data and extra data. To

specify where in 1 MB of processor memory these 4 segments are located the processor

uses four segment registers:

Code segment (CS) is a 16-bit register containing address of 64 KB segment with

processor instructions. The processor uses CS segment for all accesses to instructions

referenced by instruction pointer (IP) register. CS register cannot be changed directly.

The CS register is automatically updated during far jump, far call and far return

instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with

program stack. By default, the processor assumes that all data referenced by the stack

pointer (SP) and base pointer (BP) registers is located in the stack segment. SS register

can be changed directly using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with

program data. By default, the processor assumes that all data referenced by general

registers (AX, BX, CX, DX) and index register (SI, DI) is located in the data segment.

DS register can be changed directly using POP and LDS instructions.

Accumulator register consists of two 8-bit registers AL and AH, which can be combined

together and used as a 16-bit register AX. AL in this case contains the low order byte of

the word, and AH contains the high-order byte. Accumulator can be used for I/O

operations and string manipulation.

Base register consists of two 8-bit registers BL and BH, which can be combined together

and used as a 16-bit register BX. BL in this case contains the low-order byte of the word,

and BH contains the high-order byte. BX register usually contains a data pointer used for

based, based indexed or register indirect addressing.

Count register consists of two 8-bit registers CL and CH, which can be combined

together and used as a 16-bit register CX. When combined, CL register contains the low

order byte of the word, and CH contains the high-order byte. Count register can be used

in Loop, shift/rotate instructions and as a counter in string manipulation.

Data register consists of two 8-bit registers DL and DH, which can be combined together

and used as a 16-bit register DX. When combined, DL register contains the low order

8086 ARCHITECTURE MICROPROCESSORS &INTERFACING

byte of the word, and DH contains the high-order byte. Data register can be used as a port

number in I/O operations. In integer 32-bit multiply and divide instruction the DX

register contains high-order word of the initial or resulting number.

The EU also contains the Flag Register which is a collection of condition bits and

control bits. The condition bits are set or cleared by the execution of an instruction. The

control bits are set by instructions to control some operation of the CPU.

 Bit 0 - CF Carry Flag - Set by carry out of MSB

 Bit 2 - PF Parity Flag - Set if result has even parity

 Bit 4 - AF Auxiliary Flag - for BCD arithmetic

 Bit 6 - ZF Zero Flag - Set if result is zero

 Bit 7 - SF Sign Flag = MSB of result

 Bit 8 - TF Single Step Trap Flag

 Bit 9 - IF Interrupt Enable Flag

 Bit 10 - DF String Instruction Direction Flag

 Bit 11 - OF Overflow Flag

 Bits 1, 3, 5, 12-15 are undefined

SEGMENT REGISTERS MICROPROCESSORS & INTERFACING

SEGMENT REGISTERS

 It is used to store the memory addresses of instructions and data. Memory

Organization. Each byte in memory has a 20 bit address starting with 0 to 220-1 or 1 Meg

of addressable memory. Addresses are expressed as 5 hex digits from 00000 – FFFFF.

1. Problem: But 20 bit addresses are TOO BIG to fit in 16 bit registers?

Solution: Memory Segment.

 Block of 64K (65,536) consecutive memory bytes. A segment number is a 16 bit

number. Segment numbers range from 0000 to FFFF. Within a segment, a particular

memory location is specified with an offset. An offset also ranges from 0000 to FFFF

Memory Model for 20-bit Address Space

Question: how to generate memory address?

Ans: Physical address = segment address*10+offset address

SEGMENT REGISTERS MICROPROCESSORS & INTERFACING

Example: we have segment no 6020h and offset is 4267h then 60200+4267=64467h

physical address.

Memory:

Program, data and stack memories occupy the same memory space. As the most of the

processor instructions use 16-bit pointers the processor can effectively address only 64

KB of memory. To access memory outside of 64 KB the CPU uses special segment

registers to specify where the code, stack and data 64 KB segments are positioned within

1 MB of memory 16-bit pointers and data are stored as: address: low-order byte

,address+1: high-order byte.

1. Program memory - program can be located anywhere in memory. Jump and call

instructions can be used for short jumps within currently selected 64 KB code segment,

as well as for far jumps anywhere within 1 MB of memory.

All conditional jump instructions can be used to jump within approximately +127 to -

127 bytes from current instruction.

2. Data memory - the processor can access data in any one out of 4 available segments,

which limits the size of accessible memory to 256 KB (if all four segments point to

different 64 KB blocks).

SEGMENT REGISTERS MICROPROCESSORS & INTERFACING

Accessing data from the Data, Code, Stack or Extra segments can be usually done by

prefixing instructions with the DS:, CS:, SS: or ES: (some registers and instructions by

default may use the ES or SS segments instead of DS segment).Word data can be located

at odd or even byte boundaries. The processor uses two memory accesses to read 16-bit

word located at odd byte boundaries. Reading word data from even byte boundaries

requires only one memory access.

3. Stack memory can be placed anywhere in memory. The stack can be located at odd

memory addresses, but it is not recommended for performance reasons (see "Data

Memory" above).

Reserved locations

0000h - 03FFh are reserved for interrupt vectors. Each interrupt vector is a 32-bit pointer

in format segment: offset.FFFF0h - FFFFFh - after RESET the processor always starts

program execution at the FFFF0h address.

8086 ADDRESSING MODES MICROPROCESSORS & INTERFACING

ADDRESSING MODES OF 8086

The 8086 processors let you access memory in many different ways. The 8086

memory addressing modes provide flexible access to memory, allowing you to easily

access variables, arrays, records, pointers, and other complex data types. Mastery of the

8086 addressing modes is the first step towards mastering 8086 assembly language.

 8086 Register Addressing Modes

 8086 Memory Addressing Modes

o The Displacement Only Addressing Mode

o The Register Indirect Addressing Modes

o Indexed Addressing Modes

o Based Indexed Addressing Modes

o Based Indexed Plus Displacement Addressing Mode

1. 8086 Register Addressing Modes

Most 8086 instructions can operate on the 8086's general purpose register set. By

specifying the name of the register as an operand to the instruction, you may access the

contents of that register. Consider the 8086 mov (move) instruction:

 mov destination, source

This instruction copies the data from the source operand to the destination

operand. The eight and 16 bit registers are certainly valid operands for this instruction.

The only restriction is that both operands must be the same size. Now let's look at some

actual 8086 mov instructions:

 mov ax, bx ;Copies the value from BX into AX

 mov dl, al ;Copies the value from AL into DL

 mov si, dx ;Copies the value from DX into SI

 mov sp, bp ;Copies the value from BP into SP

 mov dh, cl ;Copies the value from CL into DH

 mov ax, ax ;Yes, this is legal!

8086 ADDRESSING MODES MICROPROCESSORS & INTERFACING

In addition to the general purpose registers, many 8086 instructions (including the

mov instruction) allow you to specify one of the segment registers as an operand. There

are two restrictions on the use of the segment registers with the mov instruction. First of

all, you may not specify cs as the destination operand, second, only one of the operands

can be a segment register. You cannot move data from one segment register to another

with a single mov instruction. To copy the value of cs to ds, you'd have to use some

sequence like:

 mov ax, cs

 mov ds, ax

You should never use the segment registers as data registers to hold arbitrary

values. They should only contain segment addresses. But more on that, later. Throughout

this text you'll see the abbreviated operand sreg used wherever segment register operands

are allowed (or required).

2. 8086 Memory Addressing Modes

o The Displacement Only Addressing Mode

o The Register Indirect Addressing Modes

o Indexed Addressing Modes

o Based Indexed Addressing Modes

o Based Indexed Plus Displacement Addressing Mode

2.1 The Displacement Only Addressing Mode

The most common addressing mode, and the one that's easiest to understand, is

the displacement-only (or direct) addressing mode. The displacement-only addressing

mode consists of a 16 bit constant that specifies the address of the target location. The

instruction mov al,ds:[8088h] loads the al register with a copy of the byte at memory

location 8088h. Likewise, the instruction mov ds:[1234h],dl stores the value in the dl

register to memory location 1234h.

8086 ADDRESSING MODES MICROPROCESSORS & INTERFACING

The displacement-only addressing mode is perfect for accessing simple variables.

Of course, you'd probably prefer using names like "I" or "J" rather than "DS:[1234h]" or

"DS:[8088h]". Well, fear not, you'll soon see it's possible to do just that.

Intel named this the displacement-only addressing mode because a 16 bit constant

(displacement) follows the mov opcode in memory. In that respect it is quite similar to

the direct addressing mode on the x86 processors (see the previous chapter). There are

some minor differences, however. First of all, a displacement is exactly that- some

distance from some other point. On the x86, a direct address can be thought of as a

displacement from address zero. On the 80x86 processors, this displacement is an offset

from the beginning of a segment (the data segment in this example). Don't worry if this

doesn't make a lot of sense right now. You'll get an opportunity to study segments to your

heart's content a little later in this chapter. For now, you can think of the displacement-

only addressing mode as a direct addressing mode. The examples in this chapter will

typically access bytes in memory. Don't forget, however, that you can also access words

on the 8086 processors:

By default, all displacement-only values provide offsets into the data segment. If

you want to provide an offset into a different segment, you must use a segment override

prefix before your address. For example, to access location 1234h in the extra segment

(es) you would use an instruction of the form mov ax,es:[1234h]. Likewise, to access this

location in the code segment you would use the instruction mov ax, cs:[1234h]. The ds:

prefix in the previous examples is not a segment override. The CPU uses the data

segment register by default. These specific examples require ds: because of MASM's

syntactical limitations.

8086 ADDRESSING MODES MICROPROCESSORS & INTERFACING

2.2 The Register Indirect Addressing Modes

The 80x86 CPUs let you access memory indirectly through a register using the

register indirect addressing modes. There are four forms of this addressing mode on the

8086, best demonstrated by the following instructions:

 mov al, [bx]

 mov al, [bp]

 mov al, [si]

 mov al, [di]

As with the x86 [bx] addressing mode, these four addressing modes reference the byte at

the offset found in the bx, bp, si, or di register, respectively. The [bx], [si], and [di] modes

use the ds segment by default. The [bp] addressing mode uses the stack

segment(ss)bydefault.You can use the segment override prefix symbols if you wish to

access data in different segments. The following instructions demonstrate the use of these

overrides:

 mov al, cs:[bx]

 mov al, ds:[bp]

 mov al, ss:[si]

 mov al, es:[di]

Intel refers to [bx] and [bp] as base addressing modes and bx and bp as base registers (in

fact, bp stands for base pointer). Intel refers to the [si] and [di] addressing modes as

indexed addressing modes (si stands for source index, di stands for destination index).

However, these addressing modes are functionally equivalent. This text will call these

forms register indirect modes to be consistent.

8086 ADDRESSING MODES MICROPROCESSORS & INTERFACING

2.3 Indexed Addressing Modes

The indexed addressing modes use the following syntax:

 mov al, disp[bx]

 mov al, disp[bp]

 mov al, disp[si]

 mov al, disp[di]

If bx contains 1000h, then the instruction mov cl,20h[bx] will load cl from memory

location ds:1020h. Likewise, if bp contains 2020h, mov dh,1000h[bp] will load dh from

locationss:3020.

The offsets generated by these addressing modes are the sum of the constant and the

specified register. The addressing modes involving bx, si, and di all use the data segment,

the disp[bp] addressing mode uses the stack segment by default. As with the register

indirect addressing modes, you can use the segment override prefixes to specify a

different segment:

 mov al, ss:disp[bx]

 mov al, es:disp[bp]

 mov al, cs:disp[si]

 mov al, ss:disp[di]

8086 ADDRESSING MODES MICROPROCESSORS & INTERFACING

You may substitute si or di in the figure above to obtain the [si+disp] and [di+disp]

addressingmodes.

2.4 Based Indexed Addressing Modes

The based indexed addressing modes are simply combinations of the register

indirect addressing modes. These addressing modes form the offset by adding together a

base register (bx or bp) and an index register (si or di). The allowable forms for these

addressing modes are

 mov al, [bx][si]

 mov al, [bx][di]

 mov al, [bp][si]

 mov al, [bp][di]

Suppose that bx contains 1000h and si contains 880h. Then the instruction

 mov al,[bx][si]

8086 ADDRESSING MODES MICROPROCESSORS & INTERFACING

would load al from location DS:1880h. Likewise, if bp contains 1598h and di contains

1004, mov ax,[bp+di] will load the 16 bits in ax from locations SS:259C and

SS:259D.The addressing modes that do not involve bp use the data segment by default.

Those that have bp as an operand use the stack segment by default.

.

You substitute di in the figure above to obtain the [bx+di] addressing mode.

You substitute di in the figure above for the [bp+di] addressing mode.

2.5 Based Indexed Plus Displacement Addressing Mode

These addressing modes are a slight modification of the base/indexed addressing

modes with the addition of an eight bit or sixteen bit constant. The following are some

examples of these addressing modes:

 mov al, disp[bx][si]

 mov al, disp[bx+di]

8086 ADDRESSING MODES MICROPROCESSORS & INTERFACING

 mov al, [bp+si+disp]

 mov al, [bp][di][disp]

You may substitute di in the figure above to produce the [bx+di+disp] addressing mode.

You may substitute di in the figure above to produce the [bp+di+disp] addressing mode.

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

8086 INSTRUCTION SET

DATA TRANSFER INSTRUCTIONS:

MOV Move byte or word to register or memory

IN, OUT Input byte or word from port, output word to port

LEA Load effective address

LDS, LES Load pointer using data segment, extra segment

PUSH, POP Push word onto stack, pop word off stack

XCHG Exchange byte or word

XLAT Translate byte using look-up table

LOGICAL INSTRUCTIONS:

NOT Logical NOT of byte or word (one's complement)

AND Logical AND of byte or word

OR Logical OR of byte or word

XOR Logical exclusive-OR of byte or word

TEST Test byte or word (AND without storing)

SHIFT AND ROTATE INSTRUCTIONS:

SHL, SHR Logical shift left, right byte or word? by 1 or CL

SAL, SAR Arithmetic shift left, right byte or word? by 1 or CL

ROL, ROR Rotate left, right byte or word? by 1 or CL

RCL, RCR Rotate left, right through carry byte or word? by 1 or CL

ARITHMETIC INSTRUCTIONS:

ADD, SUB Add, subtract byte or word

ADC, SBB Add, subtract byte or word and carry (borrow)

INC, DEC Increment, decrement byte or word

NEG Negate byte or word (two's complement)

CMP Compare byte or word (subtract without storing)

MUL, DIV Multiply, divide byte or word (unsigned)

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

IMUL, IDIV Integer multiply, divide byte or word (signed)

CBW, CWD Convert byte to word, word to double word (useful before multiply/divide)

1. Adjustments after arithmetic operations:

AAA, AAS, AAM,AAD

ASCII adjust for addition, subtraction, multiplication, division (ASCII codes 30-39)

DAA, DAS Decimal adjust for addition, subtraction (binary coded decimal numbers)

TRANSFER INSTRUCTIONS:

JMP Unconditional jump (short ?127/8, near ?32K, far between segments)

1. Conditional jumps:

JA (JNBE) Jump if above (not below or equal)? +127, -128 range only

JAE (JNB) Jump if above or equal(not below)? +127, -128 range only

JB (JNAE) Jump if below (not above or equal)? +127, -128 range only

JBE (JNA) Jump if below or equal (not above)? +127, -128 range only

JE (JZ) Jump if equal (zero)? +127, -128 range only

JG (JNLE) Jump if greater (not less or equal)? +127, -128 range only

JGE (JNL) Jump if greater or equal (not less)? +127, -128 range only

JL (JNGE) Jump if less (not greater nor equal)? +127, -128 range only

JLE (JNG) Jump if less or equal (not greater)? +127, -128 range only

JC, JNC Jump if carry set, carry not set? +127, -128 range only

JO, JNO Jump if overflow, no overflow? +127, -128 range only

JS, JNS Jump if sign, no sign? +127, -128 range only

JNP (JPO) Jump if no parity (parity odd)? +127, -128 range only

JP (JPE) Jump if parity (parity even)? +127, -128 range only

2. Loop control:

LOOP Loop unconditional, count in CX, short jump to target address

LOOPE (LOOPZ) Loop if equal (zero), count in CX, short jump to target address

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

LOOPNE (LOOPNZ) Loop if not equal (not zero), count in CX, short jump to target

address

JCXZ Jump if CX equals zero (used to skip code in loop)

SUBROUTINE AND INTERRUPT INSTRUCTIONS:

CALL, RET Call, return from procedure (inside or outside current segment)

INT, INTO Software interrupt, interrupt if overflow

IRET Return from interrupt

STRING INSTRUCTIONS:

MOVS Move byte or word string

MOVSB, MOVSW Move byte, word string

CMPS Compare byte or word string

SCAS Scan byte or word string (comparing to A or AX)

LODS, STOS Load, store byte or word string to AL or AX

Repeat instructions (placed in front of other string operations):

REP Repeat

REPE, REPZ Repeat while equal, zero

REPNE, REPNZ Repeat while not equal (zero)

PROCESSOR CONTROL INSTRUCTIONS:

1. Flag manipulation:

STC, CLC, CMC Set, clear, complement carry flag

STD, CLD Set, clear direction flag

STI, CLI Set, clear interrupt enable flag

LAHF, SAHF Load AH from flags, store AH into flags

PUSHF, POPF Push flags onto stack, pop flags off stack

2.Coprocessor, multiprocessor interface:

ESC Escape to external processor interface

LOCK Lock bus during next instruction

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

Inactive states:

NOP No operation

WAIT Wait for TEST pin activity

HLT Halt processor

adc Add with carry flag

Syntax: adc dest, src

dest: memory or register

src: memory, register, or immediate

Action: dest = dest + src + CF

Flags Affected: OF, SF, ZF, AF, PF, CF

Notes: This instruction is used to perform 32-bit addition.

add Add two numbers

Syntax: add dest, src

dest: register or memory

src: register, memory, or immediate

Action: dest = dest + src

Flags Affected: OF, SF, ZF, AF, PF, CF

Notes: Works for both signed and unsigned numbers.

and Bitwise logical AND

Syntax: and dest, src

dest: register or memory

src: register, memory, or immediate

Action: dest = dest & src

Flags Affected: OF=0, SF, ZF, and AF=?, PF, CF=0

call Call procedure or function

Syntax: call addr

addr: register, memory, or immediate

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

Action: Push IP onto stack, set IP to addr.

Flags Affected: None

cbw Convert byte to word (signed)

Syntax: cbw

Action: Sign extend AL to create a word in AX.

Flags Affected: None

Notes: For unsigned numbers use "mov ah, 0".

cli Clear interrupt flag (disable interrupts)

Syntax: cli

Action: Clear IF

Flags Affected: IF=0

cmp Compare two operands

Syntax: cmp op1, op2

op1: register or memory

op2: register, memory, or immediate

Action: Perform op1-op2, discarding the result but setting the flags.

Flags Affected: OF, SF, ZF, AF, PF, CF

Notes: Usually used before a conditional jump instruction.

cwd Convert word to doubleword (signed)

Syntax: cwd

Action: Sign extend AX to fill DX, creating a dword contained in DX::AX.

Flags Affected: None

Notes: For unsigned numbers use "xor dx, dx" to clear DX.

dec Decrement by 1

Syntax: dec op

op: register or memory

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

Action: op = op - 1

Flags Affected: OF, SF, ZF, AF, PF

div Unsigned divide

Syntax: div op8

div op16

op8: 8-bit register or memory

op16: 16-bit register or memory

Action: If operand is op8, unsigned AL = AX / op8 and AH = AX % op8

If operand is op16, unsigned AX = DX::AX / op16 and DX = DX::AX % op16

Flags Affected: OF=?, SF=?, ZF=?, AF=?, PF=?, CF=?

Notes: Performs both division and modulus operations in one instruction.

idiv Signed divide

Syntax: idiv op8

idiv op16

op8: 8-bit register or memory

op16: 16-bit register or memory

Action: If operand is op8, signed AL = AX / op8 and AH = AX % op8

If operand is op16, signed AX = DX::AX / op16 and DX = DX::AX % op16

Flags Affected: OF=?, SF=?, ZF=?, AF=?, PF=?, CF=?

Notes: Performs both division and modulus operations in one instruction.

imul Signed multiply

Syntax: imul op8

imul op16

op8: 8-bit register or memory

op16: 16-bit register or memory

Action: If operand is op8, signed AX = AL * op8

If operand is op16, signed DX::AX = AX * op16

Flags Affected: OF, SF=?, ZF=?, AF=?, PF=?, CF

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

in Input (read) from port

Syntax: in AL, op8

in AX, op8

op8: 8-bit immediate or DX

Action: If destination is AL, read byte from 8-bit port op8.

If destination is AX, read word from 16-bit port op8.

Flags Affected: None

inc Increment by 1

Syntax: inc op

op: register or memory

Action: op = op + 1

Flags Affected: OF, SF, ZF, AF, PF

int Call to interrupt procedure

Syntax: int imm8

imm8: 8-bit unsigned immediate

Action: Push flags, CS, and IP; clear IF and TF (disabling interrupts); load

word at address (imm8*4) into IP and word at (imm8*4 + 2) into CS.

Flags Affected: IF=0, TF=0

Notes: This instruction is usually used to call system routines.

iret Interrupt return

Syntax: iret

Action: Pop IP, CS, and flags (in that order).

Flags Affected: All

Notes: This instruction is used at the end of ISRs.

j?? Jump if ?? condition met

Syntax: j?? rel8

rel8: 8-bit signed immediate

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

Action: If condition ?? met, IP = IP + rel8 (sign extends rel8)

Flags Affected: None

Notes: Use the cmp instruction to compare two operands then j?? to jump

conditionally. The ?? of the instruction name represents the jump

condition, allowing for following instructions:

ja jump if above, unsigned >

jae jump if above or equal, unsigned >=

jb jump if below, unsigned <

jbe jump if below or equal, unsigned <=

je jump if equal, ==

jne jump if not equal, !=

jg jump if greater than, signed >

jge jump if greater than or equal, signed >=

jl jump if less than, signed <

jle jump if less than or equal, signed <=

All of the ?? suffixes can also be of the form n?? (e.g., jna for jump if not above). See

8086 documentation for many more ?? conditions.An assembler label should be used in

place of the rel8 operand. The assembler will then calculate the relative distance to jump.

Note also that rel8 operand greatly limits conditional jump distance (-127 to +128

bytes from IP). Use the jmp instruction in combination with j?? to overcome this

barrier.

jmp Unconditional jump

Syntax: jump rel

jump op16

jump seg:off

rel: 8 or 16-bit signed immediate

op16: 16-bit register or memory

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

seg:off: Immediate 16-bit segment and 16-bit offset

Action: If operand is rel, IP = IP + rel

If operand is op16, IP = op16

If operand is seg:off, CS = seg, IP = off

Flags Affected: None

Notes: An assembler label should be used in place of the rel8 operand. The assembler

will then calculate the relative distance to jump.

lea Load effective address offset

Syntax: lea reg16, memref

reg16: 16-bit register

memref: An effective memory address (e.g., [bx+2])

Action: reg16 = address offset of memref

Flags Affected: None

Notes: This instruction is used to easily calculate the address of data in memory. It does

not actually access memory.

mov Move data

Syntax: mov dest, src

dest: register or memory

src: register, memory, or immediate

Action: dest = src

Flags Affected: None

mul Unsigned multiply

Syntax: mul op8

mul op16

op8: 8-bit register or memory

op16: 16-bit register or memory

Action: If operand is op8, unsigned AX = AL * op8

If operand is op16, unsigned DX::AX = AX * op16

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

Flags Affected: OF, SF=?, ZF=?, AF=?, PF=?, CF

neg Two's complement negate

Syntax: neg op

op: register or memory

Action: op = 0 - op

Flags Affected: OF, SF, ZF, AF, PF, CF

nop No operation

Syntax: nop

Action: None

Flags Affected: None

not One's complement negate

Syntax: not op

op: register or memory

Action: op = ~op

Flags Affected: None

or Bitwise logical OR

Syntax: or dest, src

dest: register or memory

src: register, memory, or immediate

Action: dest = dest | src

Flags Affected: OF=0, SF, ZF, AF=?, PF, CF=0

out Output (write) to port

Syntax: out op, AL

out op, AX

op: 8-bit immediate or DX

Action: If source is AL, write byte in AL to 8-bit port op.

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

If source is AX, write word in AX to 16-bit port op.

Flags Affected: None

pop Pop word from stack

Syntax: pop op16

reg16: 16-bit register or memory

Action: Pop word off the stack and place it in op16 (i.e., op16 = [SS:SP]

then SP = SP + 2).

Flags Affected: None

Notes: Pushing and popping of SS and SP are allowed but strongly discouraged.

popf Pop flags from stack

Syntax: popf

Action: Pop word from stack and place it in flags register.

Flags Affected: All

push Push word onto stack

Syntax: push op16

op16: 16-bit register or memory

Action: Push op16 onto the stack (i.e., SP = SP - 2 then [SS:SP] = op16).

Flags Affected: None

Notes: Pushing and popping of SS and SP are allowed but strongly discouraged.

pushf Push flags onto stack

Syntax: pushf

Action: Push flags onto stack as a word.

Flags Affected: None

ret Return from procedure or function

Syntax: ret

Action: Pop word from stack and place it in IP.

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

Flags Affected: None

sal Bitwise arithmetic left shift (same as shl)

Syntax: sal op, 1

sal op, CL

op: register or memory

Action: If operand is 1, op = op << 1

If operand is CL, op = op << CL

Flags Affected: OF, SF, ZF, AF=?, PF, CF

sar Bitwise arithmetic right shift (signed)

Syntax: sar op, 1

sar op, CL

op: register or memory

Action: If operand is 1, signed op = op >> 1 (sign extends op)

If operand is CL, signed op = op >> CL (sign extends op)

Flags Affected: OF, SF, ZF, AF=?, PF, CF

sbb Subtract with borrow

Syntax: sbb dest, src

dest: register or memory

src: register, memory, or immediate

Action: dest = dest - (src + CF)

Flags Affected: OF, SF, ZF, AF, PF, CF

Notes: This instruction is used to perform 32-bit subtraction.

shl Bitwise left shift (same as sal)

Syntax: shl op, 1

shl op, CL

op: register or memory

Action: If operand is 1, op = op << 1

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

If operand is CL, op = op << CL

Flags Affected: OF, SF, ZF, AF=?, PF, CF

shr Bitwise right shift (unsigned)

Syntax: shr op, 1

shr op, CL

op: register or memory

Action: If operand is 1, op = (unsigned)op >> 1

If operand is CL, op = (unsigned)op >> CL

Flags Affected: OF, SF, ZF, AF=?, PF, CF

sti Set interrupt flag (enable interrupts)

Syntax: sti

Action: Set IF

Flags Affected: IF=1

sub Subtract two numbers

Syntax: sub dest, src

dest: regsiter or memory

src: register, memory, or immediate

Action: dest = dest - src

Flags Affected: OF, SF, ZF, AF, PF, CF

Notes: Works for both signed and unsigned numbers.

test Bitwise logical compare

Syntax: test op1, op2

op1: register, memory, or immediate

op2: register, memory, or immediate

Action: Perform op1 & op2, discarding the result but setting the flags.

Flags Affected: OF=0, SF, ZF, AF=?, PF, CF=0

Notes: This instruction is used to test if bits of a value are set.

INSTRUCTION SET OF 8086 MICROPROCESSORS & INTERFACING

xor Bitwise logical XOR

Syntax: xor dest, src

dest: register or memory

src: register, memory, or immediate

Action: dest = dest ^ src

Flags Affected: OF=0, SF, ZF, AF=?, PF, CF=0

SIMPLE PROGRAMS MICROPROCESSORS & INTERFACING

SIMPLE PROGRAMS

1. Two 16 bitUnsigned addition

data segment

num1 dw 3333h

num2 dw 2222h

result dw 01 dup(0)

data ends

code segment

assume ds:data,cs:code

start:mov ax,data

mov ds,ax

mov ax,num1

mov bx,num2

div bx

mov result,ax

hlt

code ends

end start

2. Two 16 bitUnsigned subtraction

data segment

num1 dw 3333h

num2 dw 2222h

result dw 01 dup(0)

data ends

code segment

assume ds:data,cs:code

start:mov ax,data

SIMPLE PROGRAMS MICROPROCESSORS & INTERFACING

mov ds,ax

mov ax,num1

mov bx,num2

sub ax,bx

mov result,ax

hlt

code ends

end start

3. Two 16 bitUnsigned multiplication

data segment

num1 dw 1234h

num2 dw 4321h

result dw 01 dup(0)

data ends

code segment

assume ds:data,cs:code

start:mov ax,data

mov ds,ax

mov ax,num1

mov bx,num2

mul ax,bx

mov result,ax

hlt

code ends

end start

4. 32 / 16 bit unsigned division

data segment

num1 dw 0001h

num2 dw 0001h

SIMPLE PROGRAMS MICROPROCESSORS & INTERFACING

num3 dw 0002h

result dw 2 dup(0)

data ends

code segment

assume ds:data,cs:code

start:mov ax,data

mov ds,ax

mov ax,num1

mov dx,num2

mov bx,num3

div bx

mov result,ax

mov result+2,dx

hlt

code ends

end start

SIGNED OPERATIONS MICROPROCESSORS & INTERFACING

8086 SIGNED OPERATIONS

1. Two 8 bit division

data segment

num1 db -06h

num2 db 03h

result dw 01 dup(0)

data ends

code segment

assume ds:data,cs:code

start:mov ax,data

mov ds,ax

mov ah,00h

mov al,num1

mov bl,num2

idiv bl

mov result,ax

hlt

code ends

end start

2. Two 8 bit multiplication

data segment

num1 db -06h

num2 db 08h

result dw 01 dup(0)

data ends

code segment

assume ds:data,cs:code

start:mov ax,data

mov ds,ax

mov ah,00h

mov al,num1

mov bl,num2

imul bl

mov result,ax

hlt

code ends

end start

8086 ASCII OPERATIONS MICROPROCESSORS & INTERFACING

8086 ASCII OPERATIONS

1. Two 8 bit ASCII multiplication

data segment

n1 db 33h

n2 db 32h

result dw 1 dup(0)

data ends

code segment

assume ds:data,cs:code

start:

mov ax,data

mov ds,ax

mov al,n1

mov bl,n2

mov ah,00h

and al,0fh

and bl,0fh

mul bl

aam

add ax,3030h

mov result,ax

hlt

code ends

end start

2. 16 / 8 bit ASCII division

data segment

n1 dw 3435h

n2 db 39h

result dw 1 dup(0)

data ends

code segment

assume ds:data,cs:code

start:

 MOV ax,data

 MOV ds,ax

 mov ax,n1

 mov bx,n2

 and ax,0f0fh

 and bl,0fh

 aad

 div bl

 add ax,3030h

8086 ASCII OPERATIONS MICROPROCESSORS & INTERFACING

 mov result,ax

 hlt

 code ends

 end start

3. Two 8 bit ASCII addition.

data segment

n1 db 33h

n2 db 32h

result dw 1 dup(0)

data ends

code segment

assume ds:data,cs:code

start:

mov ax,data

mov ds,ax

mov ah,00h

mov al,n1

mov bl,n2

add al,bl

aaa

add ax,3030h

mov result,ax

hlt

code ends

end start

4. Two 8 bit ASCII subtraction.

data segment

n1 db 33h

n2 db 32h

result dw 1 dup(0)

data ends

code segment

assume ds:data,cs:code

start:

mov ax,data

mov ds,ax

mov ah,00h

mov al,n1

mov bl,n2

sub al,bl

aas

add ax,3030h

8086 ASCII OPERATIONS MICROPROCESSORS & INTERFACING

mov result,ax

hlt

code ends

end start

SORTING NUMBERS MICROPROCESSORS & INTERFACING

1. TO FIND OUT A MAXIMUM NUMBER GIVEN AN ARRY LIST

data segment

list db 06h,09h,39h,04h,20h

n1 db 04h

result db 1 dup(0)

data ends

code segment

assume cs:code,ds:data

start:

 mov ax,data

 mov ds,ax

 lea si,list

 mov cl,n1

 mov al,00h

 mov al,[si]

 inc si

back:

 cmp al,[si]

 jnc next

 mov al,[si]

next:

 inc si

 dec cl

 jnz back

 mov result,al

 hlt

 code ends

 end start

2. TO FIND OUT A MINIMUM NUMBER GIVEN AN ARRY LIST

data segment

list db 06h,09h,39h,04h,20h

n1 db 04h

result db 1 dup(0)

data ends

code segment

assume cs:code,ds:data

start:

 mov ax,data

 mov ds,ax

 lea si,list

 mov cl,n1

 mov al,00h

SORTING NUMBERS MICROPROCESSORS & INTERFACING

 mov al,[si]

 inc si

back:

 cmp al,[si]

 jc next

 mov al,[si]

 next:

 inc si

 dec cl

 jnz back

 mov result,al

 hlt

 code ends

 end start

3. TO ARRANGE GIVEN NUMBERS IN AN ASCENDING ORDER

data segment

list db 03h,05h,02h

data ends

code segment

assume ds:data,cs:code

start:

 mov ax,data

 mov ds,ax

 mov cl,03h

 dec cl

loop2:

 mov si,offset list

 mov dl,cl

loop1:

 mov al,[si]

 cmp al,[si+1]

 jl next

 xchg al,[si+1]

 xchg al,[si]

next:

 inc si

 dec dl

 jnz loop1

 dec cl

 jnz loop2

 hlt

 code ends

 end start

SORTING NUMBERS MICROPROCESSORS & INTERFACING

4. TO ARRANGE GIVEN NUMBERS IN DECENDING ORDER

data segment

list db 03h,05h,02h

data ends

code segment

assume ds:data,cs:code

start:

 mov ax,data

 mov ds,ax

 mov cl,03h

 dec cl

loop2:mov si,offset list

 mov dl,cl

loop1:mov al,[si]

 cmp al,[si+1]

 jg next

 xchg al,[si+1]

 xchg al,[si]

next: inc si

 dec dl

 jnz loop1

 dec cl

 jnz loop2

 hlt

 code ends

 end start

ASSEMBLER DIRECTIVES MICROPROCESSORS & INTERFACING

ASSEMBLER DIRECTIVES

The assembly language program consists of some statements which are not the

commands to the processor. They are not translated to machine code. They only guide the

assembler, linker and loader. They are pseudo operations and called assembler directives.

SOME ASSEMBLER DIRECTIVES:

1. ASSUME: Tells the assembler what segments to use.

Syntax: Assume segment register: segment name, segment register: segment name

 Ex: Assume Cs: Code, Ds:Data

2. SEGMENT: Defines the segment name and specifies that the code that follows is in

that segment.

Syntax: Segment name SEGMENT

3. ENDS: End of segment

4. ORG: Originate or Origin: sets the location counter.

Syntax: a. ORG numeric value

 b. ORG $+ numeric value

5. END: End of source code. This directive is used to inform the assembler the end of a

program.

Syntax: a. END

 b. END label

6. NAME: Give source module a name.

7. EQU: Equate or equivalence

Syntax: a. variable name EQU expression

 b. string name EQU ‘string’

ASSEMBLER DIRECTIVES MICROPROCESSORS & INTERFACING

8. LABEL: Assign current location count to a symbol.

Syntax : label name LABEL label type

9. $: Current location count

10. ALIGN: aligns the next segment at even address

11. STACK

Stack 100d (or) stack 64h; default 1024 bytes

12. DATA

 DB – Define Byte- Variable Name DB value1, value2…..

 DW – Define Word - Variable Name DW value1, value2…..

 DD – Define Double word - Variable Name DW value1, value2…..

 DQ – Define Quad word - Variable Name DQ value1, value2…..

 DT – Define Ten bytes - Variable Name DT value1, value2…..

 DUP – used to declare an array of bytes

Syntax: Variable name data type Num DUP (Value)

13. CODE – indicates the beginning of code segment

Ex: code [name].

14. EXIT: marks the end of CS, most of the time we use 4CH function of DOS interrupt

21H.

15. OFFSET: this directive is an operation and informs the assembler to determine the

displacement of the specified variable from the start of the segment.

Syntax: OFFSET variable name

16. PTR: Pointer – This directive is used to specify the type of memory access.

Syntax: Data Type PTR

17. PROC, ENDP & MACRO, ENDM directives support modularity.

ASSEMBLER DIRECTIVES MICROPROCESSORS & INTERFACING

A. MACRO – It indicates the start of a macro. Arguments are dummy variables and are

optional.

B. ENDM – End of macro – it indicates the assembler the end of macro.

C. PROC – Procedure

Syntax: Procedure name PROC NEAR/FAR

D. ENDP – End of procedure – this directive informs the end of procedure whose name is

specified before ENDP.

Syntax: Procedure name ENDP

PROCEDURES AND MACROS MICROPROCESSORS & INTERFACING

PROCEDURES AND MACROS

1. PROCEDURES

A procedure is a collection of instructions to which we can direct the flow

of our program, and once the execution of these instructions is over

control is given back to the next line to process of the code which called

on the procedure.

Procedures help us to create legible and easy to modify programs.

At the time of invoking a procedure the address of the next instruction of

the program is kept on the stack so that, once the flow of the program has

been transferred and the procedure is done, one can return to the next line

of the original program, the one which called the procedure.

SYNTAX OF A PROCEDURE

There are two types of procedures, the intrasegments, which are found on

the same segment of instructions, and the inter-segments which can be

stored on different memory segments.

When the intrasegment procedures are used, the value of IP is stored on the

stack and when the intrasegments are used the value of CS:IP is stored.

To divert the flow of a procedure (calling it), the following directive is

used:

CALL Name Of The Procedure

The part which make a procedure are:

Declaration of the procedure

Code of the procedure

Return directive

Termination of the procedure

PROCEDURES AND MACROS MICROPROCESSORS & INTERFACING

For example, if we want a routine which adds two bytes stored in AH and AL

each one, and keep the addition in the BX registers:

Adding Proc Near ; Declaration of the procedure

Mov Bx, 0 ; Content of the procedure

Mov B1, Ah

Mov Ah, 00

Add Bx, Ax

Ret ; Return directive

Add Endp ; End of procedure declaration

On the declaration the first word, Adding, corresponds to the name of out

procedure, Proc declares it as such and the word Near indicates to the MASM

that the procedure is intra segment.

The Ret directive loads the IP address stored on the stack to return to the original

program, lastly, the Add Endp directive indicates the end of the procedure.

To declare an inter segment procedure we substitute the word Near for the

word FAR.

The calling of this procedure is done the following way:

Call Adding Macros offer a greater flexibility in programming compared to the

procedures, nonetheless, these last ones will still be used.

2. MACROS

Definition of the macro

A macro is a group of repetitive instructions in a program which are codified only once

and can be used as many times as necessary.

PROCEDURES AND MACROS MICROPROCESSORS & INTERFACING

The main difference between a macro and a procedure is that in the macro

the passage of parameters is possible and in the procedure it is not, this

is only applicable for the TASM - there are other programming languages

which do allow it. At the moment the macro is executed each parameter is

substituted by the name or value specified at the time of the call.

We can say then that a procedure is an extension of a determined program,

while the macro is a module with specific functions which can be used by

different programs.

Another difference between a macro and a procedure is the way of calling

each one, to call a procedure the use of a directive is required, on the

other hand the call of macros is done as if it were an assembler

instruction.

Syntax of a Macro

The parts which make a macro are:

Declaration of the macro

Code of the macro

Macro termination directive

The declaration of the macro is done the following way:

Name Macro MACRO [parameter1, parameter2...]

Even though we have the functionality of the parameters it is possible to

create a macro which does not need them.

The directive for the termination of the macro is: ENDM

An example of a macro, to place the cursor on a determined position on the

screen is:

PROCEDURES AND MACROS MICROPROCESSORS & INTERFACING

Position MACRO Row, Column

PUSH AX

PUSH BX

PUSH DX

MOV AH, 02H

MOV DH, Row

MOV DL, Column

MOV BH, 0

INT 10H

POP DX

POP BX

POP AX

ENDM

To use a macro it is only necessary to call it by its name, as if it were

another assembler instruction, since directives are no longer necessary as

in the case of the procedures. Example:

Macro Libraries

One of the facilities that the use of macros offers is the creation of

libraries, which are groups of macros which can be included in a program

from a different file.

The creation of these libraries is very simple, we only have to write a

file with all the macros which will be needed and save it as a text file.

To call these macros it is only necessary to use the following instruction

Include NameOfTheFile, on the part of our program where we would normally

write the macros, this is, at the beginning of our program, before the

declaration of the memory model.

PROCEDURES AND MACROS MICROPROCESSORS & INTERFACING

The macros file was saved with the name of MACROS.TXT, the

instruction Include would be used the following way:

;Beginning of the program

Include MACROS.TXT

.MODEL SMALL

.DATA

;The data goes here

.CODE

Beginning:

;The code of the program is inserted here

.STACK

;The stack is defined

End beginning

;Our program ends

8086 STRING MANIPULATIONS MICROPROCESSORS & INTERFACING

PROGRAMS ON STRING MANIPULATIONS

a) Block Transfer:

data segment

num db 32h,30h,29h,25h

num2 db 04 dup(0)

data ends

code segment

assume ds:data,cs:code

start:mov ax,data

mov ds,ax

mov es,ax

mov si,offset num

mov di,offset num2

mov cl,04h

rep movsb

hlt

code ends

end start

b) Block Transfer:

data segment

num db 32h,30h,29h,25h

num2 db 04 dup(0)

data ends

code segment

assume ds:data,cs:code

start:mov ax,data

mov ds,ax

mov es,ax

mov si,offset num

mov di,offset num2

mov bx,0004h

step:

dec bx

lodsb

mov [bx][di],al

jnz step

hlt

code ends

end start

8086 STRING MANIPULATIONS MICROPROCESSORS & INTERFACING

c) Insertion of a string:

data segment

num1 db 32h,30h,29h,25h

num2 db 26h,31h

place dw 0001h

length1 db 04h

length2 db 02h

result db 07 dup(0)

data ends

code segment

assume ds:data,cs:code

start:

mov ax,data

mov ds,ax

mov es,ax

mov si,offset num1

mov bx,offset num2

mov di,offset result

mov cl,length1

mov ch,length2

back:

cmp si,place

je li

here:

lodsb

stosb

dec cl

jnz back

hlt

li:

mov al,[bx]

mov [di],al

inc di

inc bx

dec ch

jnz li

jmp here

code ends

end start

d) Deletion of a string:

data segment

giv db 32h,30h,29h,25h

8086 STRING MANIPULATIONS MICROPROCESSORS & INTERFACING

place dw 0000h

lgiv dw 0004h

ldel dw 0002h

result db 06 dup(0)

data ends

code segment

assume ds:data,cs:code

start:

mov ax,data

mov ds,ax

mov es,ax

mov si,offset giv

mov di,offset result

mov cx,0000h

back:

cmp si,place

je li

lodsb

stosb

inc cx

here:

cmp cx,lgiv

jb back

hlt

li:

add cx,ldel

add si,ldel

jmp here

code ends

end start

8086 CONVERSIONS MICROPROCESSORS & INTERFACING

PROGRAMS ON CONVERSIONS

a) BCD to Hexa conversion

data segment

num1 db 32h

result dw 01 dup(0)

data ends

code segment

assume ds:data,cs:code

start:

mov ax,data

mov ds,ax

mov al,num1

mov bl,num1

mov cl,04h

and al,0f0h

and bl,0fh

shr al,cl

mov ch,0ah

mul ch

add al,bl

mov result,al

hlt

code ends

end start

b) Hexa to Ascii coded BCD

data segment

num1 db 22h

result dw 01 dup(0)

data ends

code segment

assume ds:data,cs:code

start:

mov ax,data

mov ds,ax

mov al,num1

mov ah,00h

mov bl,0ah

div bl

xchg al,ah

add ax,3030h

mov result,ax

hlt

8086 CONVERSIONS MICROPROCESSORS & INTERFACING

code ends

end start

c) Packed to unpacked BCD

data segment

num1 db 32h

result dw 01 dup(0)

data ends

code segment

assume ds:data,cs:code

start:

mov ax,data

mov ds,ax

mov al,num1

mov bl,num1

and al,0fh

and bl,0f0h

mov cl,04h

shr bl,cl

mov ah,bl

add ax,3030h

mov result,ax

hlt

code ends

end start

ALP MICROPROCESSORS & INTERFACING

ASSEMBLY LANGUAGE PROGRAMS

A. About ALP:

Assembly languages are a family of low-level languages for programming

computers, microprocessors, microcontrollers, and other (usually) integrated circuits.

They implement a symbolic representation of the numeric machine codes and other

constants needed to program a particular CPU architecture. This representation is usually

defined by the hardware manufacturer, and is based on abbreviations (called mnemonics)

that help the programmer remember individual instructions, registers, etc. An assembly

language is thus specific to certain physical or virtual computer architecture (as opposed

to most high-level languages, which are usually portable).

A utility program called an assembler is used to translate assembly language

statements into the target computer's machine code. The assembler performs a more or

less isomorphic translation (a one-to-one mapping) from mnemonic statements into

machine instructions and data. This is in contrast with high-level languages, in which a

single statement generally results in many machine instructions.

Many sophisticated assemblers offer additional mechanisms to facilitate program

development, control the assembly process, and aid debugging. In particular, most

modern assemblers include a macro facility (described below), and are called macro

assemblers.

Assemblers are generally simpler to write than compilers for high-level

languages, and have been available since the 1950s. Modern assemblers, especially for

RISC based architectures, such as MIPS, Sun SPARC, HP PA-RISC and x86(-64),

optimize instruction scheduling to exploit the CPU pipeline efficiently.

There are two types of assemblers based on how many passes through the source

are needed to produce the executable program. One pass assemblers go through the

source code once and assumes that all symbols will be defined before any instruction that

http://en.wikipedia.org/wiki/Low-level_language
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Mnemonic#Assembly_mnemonics
http://en.wikipedia.org/wiki/Instruction_(computer_science)
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/High-level_language
http://en.wikipedia.org/wiki/Porting
http://en.wikipedia.org/wiki/Utility_program
http://en.wikipedia.org/wiki/Isomorphism
http://en.wikipedia.org/wiki/Mnemonic
http://en.wikipedia.org/wiki/High-level_language
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Macro_(computer_science)
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/High-level_language
http://en.wikipedia.org/wiki/High-level_language
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/MIPS_architecture
http://en.wikipedia.org/wiki/SPARC
http://en.wikipedia.org/wiki/PA-RISC
http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/X86-64
http://en.wikipedia.org/wiki/Instruction_scheduling
http://en.wikipedia.org/wiki/CPU_pipeline

ALP MICROPROCESSORS & INTERFACING

references them. Two pass assemblers (and multi-pass assemblers) create a table with all

unresolved symbols in the first pass, then use the 2nd pass to resolve these addresses. The

advantage in one pass assemblers is speed - which is not as important as it once was with

advances in computer speed and capabilities. The advantage of the two-pass assembler is

that symbols can be defined anywhere in the program source. As a result, the program

can be defined in a more logical and meaningful way. This makes two-pass assembler

programs easier to read and maintain.

More sophisticated high-level assemblers provide language abstractions such as:

 Advanced control structures

 High-level procedure/function declarations and invocations

 High-level abstract data types, including structures/records, unions, classes, and

sets

 Sophisticated macro processing

 Object-Oriented features such as encapsulation, polymorphism, inheritance,

interfaces.

B. BASIC ELEMENTS

Any Assembly language consists of 3 types of instruction statements which are used

to define the program operations:

1. Opcode mnemonics

2. Data sections

3. Assembly directives

1. Opcode mnemonics

Instructions (statements) in assembly language are generally very simple, unlike those in

high-level languages. Generally, an opcode is a symbolic name for a single executable

machine language instruction, and there is at least one opcode mnemonic defined for each

machine language instruction. Each instruction typically consists of an operation or

http://en.wikipedia.org/wiki/High-level_assembler
http://en.wikipedia.org/wiki/High-level_programming_language

ALP MICROPROCESSORS & INTERFACING

opcode plus zero or more operands. Most instructions refer to a single value, or a pair of

values. Operands can be either immediate (typically one byte values, coded in the

instruction itself) or the addresses of data located elsewhere in storage. This is determined

by the underlying processor architecture: the assembler merely reflects how this

architecture works.

2. Data sections

There are instructions used to define data elements to hold data and variables. They

define what type of data, length and alignment of data. These instructions can also define

whether the data is available to outside programs (programs assembled separately) or

only to the program in which the data section is defined.

3. Assembly directives / pseudo-ops

Assembly Directives are instructions that are executed by the Assembler at assembly

time, not by the CPU at run time. They can make the assembly of the program dependent

on parameters input by the programmer, so that one program can be assembled different

ways, perhaps for different applications. They also can be used to manipulate

presentation of the program to make it easier for the programmer to read and maintain.

The names of pseudo-ops often start with a dot to distinguish them from machine

instructions.

Some assemblers also support pseudo-instructions, which generate two or more machine

instructions. Most assemblers provide flexible symbol management, allowing

programmers to manage different namespaces, automatically calculate offsets within data

structures, and assign labels that refer to literal values or the result of simple

computations performed by the assembler. Labels can also be used to initialize constants

and variables with replaceable addresses.

Assembly languages, like most other computer languages, allow comments to be added to

assembly source code that are ignored by the assembler. Good use of comments is even

http://en.wikipedia.org/wiki/Operands
http://en.wikipedia.org/wiki/Namespace_(computer_science)
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Data_structures
http://en.wikipedia.org/wiki/Source_code

ALP MICROPROCESSORS & INTERFACING

more important with assembly code than with higher-level languages, as the meaning and

purpose of a sequence of instructions is harder to decipher from the code itself.

Wise use of these facilities can greatly simplify the problems of coding and maintaining

low-level code. Raw assembly source code as generated by compilers or dis assemblers

— code without any comments, meaningful symbols, or data definitions — is quite

difficult to read when changes must be made.

PROGRAM CONTROL INSTRUCTIONS MICROPROCESSORS & INTERFACING

 58

PROGRAM CONTROL INSTRUCTIONS

Program control instructions change or modify the flow of a program. The most basic

kind of program control is the unconditional branch or unconditional jump. Branch is

usually an indication of a short change relative to the current program counter. Jump is

usually an indication of a change in program counter that is not directly related to the

current program counter (such as a jump to an absolute memory location or a jump using

a dynamic or static table), and is often free of distance limits from the current program

counter.

The penultimate kind of program control is the conditional branch or conditional jump.

This gives computers their ability to make decisions and implement both loops and

algorithms beyond simple formulas.

Most computers have some kind of instructions for subroutine call and return from

subroutines.

There are often instructions for saving and restoring part or all of the processor state

before and after subroutine calls. Some kinds of subroutine or return instructions will

include some kinds of save and restore of the processor state.

Even if there are no explicit hardware instructions for subroutine calls and returns,

subroutines can be implemented using jumps (saving the return address in a register or

memory location for the return jump). Even if there is no hardware support for saving the

processor state as a group, most (if not all) of the processor state can be saved and

restored one item at a time.

NOP, or no operation, takes up the space of the smallest possible instruction and causes

no change in the processor state other than an advancement of the program counter and

any time related changes. It can be used to synchronize timing (at least crudely). It is

often used during development cycles to temporarily or permanently wipe out a series of

instructions without having to reassemble the surrounding code.

PROGRAM CONTROL INSTRUCTIONS MICROPROCESSORS & INTERFACING

 59

Stop or halt instructions bring the processor to an orderly halt, remaining in an idle state

until restarted by interrupt, trace, reset, or external action.

Reset instructions reset the processor. This may include any or all of: setting registers to

an initial value, setting the program counter to a standard starting location (restarting the

computer), clearing or setting interrupts, and sending a reset signal to external devices.

 JMP Jump; Intel 80x86; unconditional jump (near [relative displacement from

PC] or far; direct or indirect [based on contents of general purpose register,

memory location, or indexed])

 JMP Jump; MIX; unconditional jump to location M; J-register loaded with the

address of the instruction which would have been next if the jump had not been

taken

 Jcc Jump Conditionally; Intel 80x86; conditional jump (near [relative

displacement from PC] or far; direct or indirect [based on contents of general

purpose register, memory location, or indexed]) based on a tested condition:

JA/JNBE, JAE/JNB, JB/JNAE, JBE/JNA, JC, JE/JZ, JNC, JNE/JNZ, JNP/JPO,

JP/JPE, JG/JNLE, JGE/JNL, JL/JNGE, JLE/JNG, JNO, JNS, JO, JS

 Jcc Jump on Condition; MIX; conditional jump to location M based on

comparison indicator; if jump occurs, J-register loaded with the address of the

instruction which would have been next if the jump had not been taken; JL (less),

JE (equal), JG (greater), JGE (greater-or-equal), JNE (unequal), JLE (less-or-

equal)

 LOOP Loop While ECX Not Zero; Intel 80x86; used to implement DO loops,

decrements the ECX or CX (count) register and then tests to see if it is zero, if the

ECX or CX register is zero then the program continues to the next instruction

(exiting the loop), otherwise the program makes a byte branch to continue the

loop; does not modify flags

 LOOPE Loop While Equal; Intel 80x86; used to implement DO loops, WHILE

loops, UNTIL loops, and similar constructs, decrements the ECX or CX (count)

register and then tests to see if it is zero, if the ECX or CX register is zero or the

Zero Flag is clear (zero) then the program continues to the next instruction (to exit

PROGRAM CONTROL INSTRUCTIONS MICROPROCESSORS & INTERFACING

 60

the loop), otherwise the program makes a byte branch (to continue the loop);

equivalent to LOOPZ; does not modify flags

 LOOPNE Loop While Not Equal; Intel 80x86; used to implement DO loops,

WHILE loops, UNTIL loops, and similar constructs, decrements the ECX or CX

(count) register and then tests to see if it is zero, if the ECX or CX register is zero

or the Zero Flag is set (one) then the program continues to the next instruction (to

exit the loop), otherwise the program makes a byte branch (to continue the loop);

equivalent to LOOPNZ; does not modify flags

 LOOPNZ Loop While Not Zero; Intel 80x86; used to implement DO loops,

WHILE loops, UNTIL loops, and similar constructs, decrements the ECX or CX

(count) register and then tests to see if it is zero, if the ECX or CX register is zero

or the Zero Flag is set (one) then the program continues to the next instruction (to

exit the loop), otherwise the program makes a byte branch (to continue the loop);

equivalent to LOOPNE; does not modify flags

 LOOPZ Loop While Zero; Intel 80x86; used to implement DO loops, WHILE

loops, UNTIL loops, and similar constructs, decrements the ECX or CX (count)

register and then tests to see if it is zero, if the ECX or CX register is zero or the

Zero Flag is clear (zero) then the program continues to the next instruction (to exit

the loop), otherwise the program makes a byte branch (to continue the loop);

equivalent to LOOPE; does not modify flags

 JCXZ Jump if Count Register Zero; Intel 80x86; conditional jump if CX (count

register) is zero; used to prevent entering loop if the count register starts at zero;

does not modify flags

 JECXZ Jump if Extended Count Register Zero; Intel 80x86; conditional jump if

ECX (count register) is zero; used to prevent entering loop if the count register

starts at zero; does not modify flags

 CALL Call Procedure; Intel 80x86; pushes the address of the next instruction

following the subroutine call onto the system stack, decrements the system stack

pointer, and changes program flow to the address specified (near [relative

displacement from PC] or far; direct or indirect [based on contents of general

purpose register or memory location])

PROGRAM CONTROL INSTRUCTIONS MICROPROCESSORS & INTERFACING

 61

 RET Return From Procedure; Intel 80x86; fetches the return address from the top

of the system stack, increments the system stack pointer, and changes program

flow to the return address; optional immediate operand added to the new top-of-

stack pointer, effectively removing any arguments that the calling program

pushed on the stack before the execution of the corresponding CALL instruction;

possible change to lesser privilege

 IRET Return From Interrupt; Intel 80x86; transfers the value at the top of the

system stack into the flags register, increments the system stack pointer, fetches

the return address from the top of the system stack, increments the system stack

pointer, and changes program flow to the return address; optional immediate

operand added to the new top-of-stack pointer, effectively removing any

arguments that the calling program pushed on the stack before the execution of

the corresponding CALL instruction; possible change to lesser privilege

 PUSHA Push All Registers; Intel 80x86; move contents all 16-bit general

purpose registers to memory pointed to by stack pointer (in the order AX, CX,

DX, BX, original SP, BP, SI, and DI); does not affect flags

 POPA Pop All Registers; Intel 80x86; move memory pointed to by stack pointer

to all 16-bit general purpose registers (except for SP); does not affect flags

 NOP No Operation; no change in processor state other than an advance of the

program counter

 HLT Halt; stop machine, computer restarts on next instruction

8086 PIN CONFIGURATION MICROPROCESSORS & INTERFACING

 62

8086 PIN CONFIGURATION

The pins and signals of 8086 can be classified into six groups, they are as follows.

 Address/status bus

 Address/data bus

 Control and status signals

 Interrupts and external initiated signals

 Power supply and clock frequency signals

The 8086 works in two modes, minimum and maximum. Accordingly pin configuration

changes. They are 32 signals common to both modes. Remaining 8 pins are different for

each mode. Let us describe each signal/pin.

8086 PIN CONFIGURATION MICROPROCESSORS & INTERFACING

 63

Vcc (pin 40): Power

Gnd (pin 1 and 20): Ground

AD0...AD7, A8...A15, A19/S6, A18/S5, A17/S4, and A16/S3: 20 -bit Address Bus

MN/MX’ (input): Indicates Operating mode

READY (input, Active High): take µP to wait state

CLK (input): Provides basic timing for the processor

RESET (input, Active High): At least 4 clock cycles Causes the µP immediately

terminate its present activity.

TEST’ (input, Active Low): Connect this to HIGH

HOLD (input, Active High): Connect this to LOW (BR)

HLDA (output, Active High): Hold Ack (BG)

INTR (input, Active High): Interrupt request

INTA’ (output, Active Low): Interrupt Acknowledge

NMI (input, Active High): Non-mask able interrupt

DEN’ (output): Data Enable. It is LOW when processor wants to receive data or

processor is giving out data (to74245)

DT/R’ (output): Data Transmit/Receive. When high, data from µP to memory

When Low, data is from memory to µP (to74245 dir)

IO/M’ (output): If High µP access I/O Device. If Low µP access memory

RD’ (output): When Low, µP is performing a read operation

WR’ (output): When Low, µP is performing a write operation

8086 PIN CONFIGURATION MICROPROCESSORS & INTERFACING

 64

ALE (output): Address Latch Enable, Active High Provided by µP to latch address

When HIGH, µP is using AD0...AD7, A19/S6, A18/S5, A17/S4, A16/S3 as address lines

S4 S3 Function

0 0 Extra segment access

0 1 Stack segment access

1 0 Code segment access

1 1 Data segment access

/S2, /S1, /S0 status bits (output): pin 26, 27 and 28

These signals indicate the status of current bus cycle i.e. type of machine cycle. The

following table gives the type of machine cycles.

CharacteristicsS0S1S2

Interrupt

acknowledge
000

Read I/O port100

Write I/O port010

Halt110

Code access001

Read memory101

Write memory011

Passive State111

QS0, QS1 queue status (output) pin 24 and 25:

These signals indicate the status of instruction queue during the previous clock cycle.

These are accessed by the co-processor 8087. Following table gives the queue status.

8086 PIN CONFIGURATION MICROPROCESSORS & INTERFACING

 65

/LOCK: This output pin indicates that other system bus masters will be prevented from

gaining the system bus, while the /LOCK signal is low. The /LOCK signal is activated by

the lock prefix instruction and remains active until the completion of the next instruction.

8086 MINIMUM MODE MICROPROCESSORS & INTERFACING

 66

MINIMUM MODE 8086 SYSTEM

 In a minimum mode 8086 system, the microprocessor 8086 is operated in

minimum mode by strapping its MN//MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor chip

itself. There is a single microprocessor in the minimum mode system.

 The remaining components in the system are latches, Tran receivers, clock

generator, memory and I/O devices. Some type of chip selection logic may be

required for selecting memory or I/O devices, depending upon the address map of

the system.

 Latches are generally buffered output D-type flip-flops like 74LS373 or 8282.

They are used for separating the valid address from the multiplexed address/data

signals and are controlled by the ALE signal generated by 8086.

8086 MINIMUM MODE MICROPROCESSORS & INTERFACING

 67

 Transreceivers are the bidirectional buffers and some times they are called as data

amplifiers. They are required to separate the valid data from the time multiplexed

address/data signals.

 They are controlled by two signals namely, DEN and DT/R.

 The DEN signal indicates the direction of data, i.e. from or to the processor. The

system contains memory for the monitor and users program storage.

 Usually, EPROM is used for monitor storage, while RAM for user’s program

storage. A system may contain I/O devices.

 The working of the minimum mode configuration system can be better described

in terms of the timing diagrams rather than qualitatively describing the operations.

 The opcode fetch and read cycles are similar. Hence the timing diagram can be

categorized in two parts, the first is the timing diagram for read cycle and the

second is the timing diagram for write cycle.

 The read cycle begins in T1 with the assertion of address latch enable (ALE)

signal and also M / IO signal. During the negative going edge of this signal, the

valid address is latched on the local bus.

 The BHE and A0 signals address low, high or both bytes. From T1 to T4, the M/IO

signal indicates a memory or I/O operation.

 At T2, the address is removed from the local bus and is sent to the output. The bus

is then tristated. The read (RD) control signal is also activated in T2.

 The read (RD) signal causes the address device to enable its data bus drivers.

After RD goes low, the valid data is available on the data bus.

8086 MINIMUM MODE MICROPROCESSORS & INTERFACING

 68

 The addressed device will drive the READY line high. When the processor

returns the read signal to high level, the addressed device will again tri state its

bus drivers.

 A write cycle also begins with the assertion of ALE and the emission of the

address. The M/IO signal is again asserted to indicate a memory or I/O operation.

In T2, after sending the address in T1, the processor sends the data to be written to

the addressed location.

 The data remains on the bus until middle of T4 state. The WR becomes active at

the beginning of T2 (unlike RD is somewhat delayed in T2 to provide time for

floating).

 The BHE and A0 signals are used to select the proper byte or bytes of memory or

I/O word to be read or write.

 The M/IO, RD and WR signals indicate the type of data transfer as specified in

table below.

8086 MINIMUM MODE MICROPROCESSORS & INTERFACING

 69

Write Cycle Timing Diagram for Minimum Mode

Hold Response sequence: The HOLD pin is checked at leading edge of each clock pulse.

If it is received active by the processor before T4 of the previous cycle or during T1 state

of the current cycle, the CPU activates HLDA in the next clock cycle and for succeeding

bus cycles, the bus will be given to another requesting master.

The control of the bus is not regained by the processor until the requesting master does

not drop the HOLD pin low. When the request is dropped by the requesting master, the

HLDA is dropped by the processor at the trailing edge of the next clock.

8086 MINIMUM MODE MICROPROCESSORS & INTERFACING

 70

Bus Request and Bus Grant Timings in Minimum Mode System

Read Cycle timing Diagram for Minimum Mode

8086 MAXIMUM MODE MICROPROCESSORS & INTERFACING

 71

8086 MAXIMUM MODE

Maximum mode is one of the two hardware modes available to the Intel 8086 and

8088 processors (CPU).Maximum mode is for large applications such as multiprocessing.

The mode is hard-wired into the circuit and cannot be changed by software.

The Bus controller is introduced here due to the support of multiprocessor environment

of Maximum mode. The decoder is used to select desired memory chips. The remaining

components of this circuit are similar to 8088 minimum mode circuit, as shown in figure.

Note that the bank high enable signal is used to control the access of even or odd memory

banks of 8086 system.

The status codes (S0, S1, S2) of the CPU is used by the bus controller to activate

maximum mode memory control signals: These codes are important for multiprocessor

environment, supported by Maximum mode.

http://en.wikipedia.org/wiki/Intel_8086
http://en.wikipedia.org/wiki/Intel_8088
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Multiprocessing

8086 MAXIMUM MODE MICROPROCESSORS & INTERFACING

 72

Maximum-mode Memory-Read bus-cycle of 8086 system

To complete the minimum-mode memory-read bus-cycle, the required control signals

with appropriate active logic levels are:

 IO/M = ‘logic 0’, to select memory interface

 MN/MX = ‘logic 0’, to select maximum-mode of operation

 DT/R = ‘logic 0’, to activate the data-receive mode of ‘Data-bus-buffer’

 Valid Physical-address (A0 to A19) and BHE signal is generated by CPU

 ALE-pulse, to latch the valid Physical-address. ()

 Proper status code S0 to S2 (as shown in table of slide 8) is generated by

 CPU to initiate data reading (MRDC) from the desired memory bank

 DEN = ‘1’, enables the ‘Data-Bus-transceiver-buffer’ to let data pass

 Reset MRDC and DEN signals to END the read-bus-cycle.

The timing diagram for 8086 maximum mode memory read operation is shown below

using logic ‘0’ and ‘1’ waveforms.

8086 MAXIMUM MODE MICROPROCESSORS & INTERFACING

 73

Maximum-mode Memory-Read cycle of 8086

The timing diagram for 8086 maximum mode memory read operation is shown below

using logic ‘0’ and ‘1’ wave forms.To complete the maximum-mode memory-write bus-

cycle, the required control signals with appropriate active logic levels are:

 IO/M = ‘logic 0’, to select memory interface

 MN/MX = ‘logic 0’, to select maximum-mode of operation

 DT/R = ‘logic 1’, to activate the data-transmit mode of ‘Data-bus-buffer’

 Valid Physical-address (A0 to A19) and BHE signal is generated by CPU

 ALE-pulse, to latch the valid Physical-address.

 Proper status code S0 to S2 (as shown in table of slide 8) is generated by

 CPU to initiate data writing (MRTC) from the desired memory bank

 DEN = ‘1’, enables the ‘Data-Bus-transceiver-buffer’ to let data pass

 Reset MRTC and DEN signals to END the read-bus-cycle

8086 MAXIMUM MODE MICROPROCESSORS & INTERFACING

 74

