Interacting Devices Unit - 3

Dr. P.V. S LAKSHMI JAGADAMBA Professor, Department of CSE, GVP College of Engineering for Women

chord keyboard

e-reader

gloves and rings

handheld

joystick

touch screen

keyboard

reference object

trackball

NHC minute In Amerik Child Coke-1973

stylus

watch

pedal

miscellaneous

pen computer

touch pad

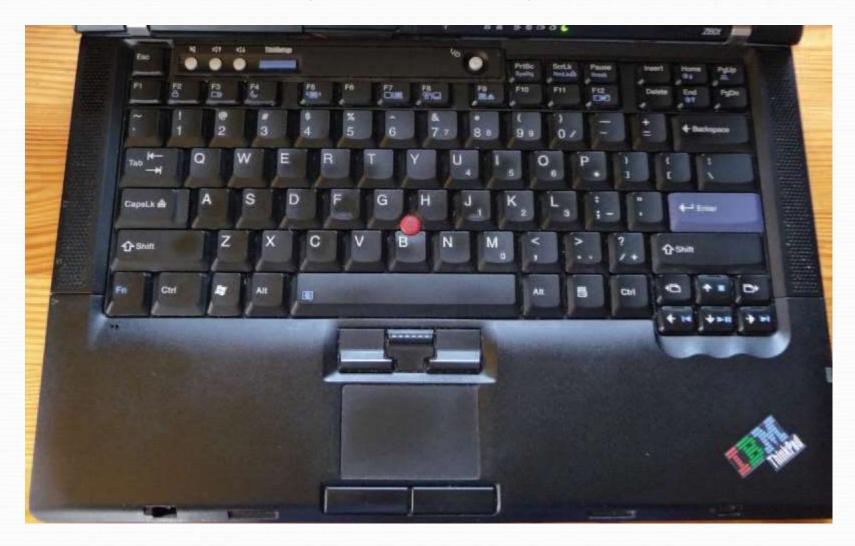
Interaction Devices

- ***** The Standard: QWERTY (or Sholes) Keyboard
- * Mobile devices are driving the need for future input devices
 - Pointing devices (mouse, touch screen)
 - Gestural input
 - Two-handed input
 - 3-d pointing
 - Voice input/output
 - * Wearable devices
 - * Whole body involvement
 - Niche applications
 - Eye-trackers
 - Data Gloves
 - * Haptic/force-feedback
 - * Brain-controlled mouse movement

Interaction Devices

- Multimodal interfaces
 - Combine several modes of input/output
 - ***** E.g., voice commands with pointing devices
- Likely direction
 - Giving users the ability to switch between modes depending on their needs
 - * E.g., Driving a car
 - ***** Operate navigation systems with touch or voice input
 - * Invoke visual or voice output based on location (e.g., moving in traffic vs. at a stop sign)
 - *** DB** adjustment for ambient noise

Interaction Devices


- Context-aware computing
 - Sensors:
 - & Global Positioning System (GPS)
 - Cell-phone sources
 - Wireless connections
 - * Make detailed information available about the users surroundings
 - * Restaurants, gas stations
 - Museum visitors or tourists
 - Auto-connect to a printer based on room location

Interacting Devices

Computer-processor speeds and storage capabilities has been matched by improvements in many input/output devices.

- Ten-character-per-second Teletypes have been replaced by high-speed mega-pixel graphical displays for output.
- Discuss in this lecture:
 - Keyboards and Keypads
 - Pointing Devices
 - Speech and Auditory Interfaces
 - Displays Small and Large

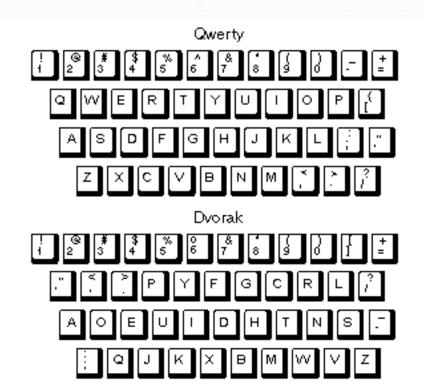
Keyboard Layouts

Keyboards and Keypads

*** QWERTY**

- 1870 Christopher Latham Sholes
- good mechanical design and a clever placement of the letters that slowed down the users enough that key jamming was infrequent
- Beginners approximate 1 keystroke per second
- Average office worker is 5 keystrokes per second (50 words per minute)

Keyboard Layouts


Dvorak layout

- *****1920
- reduces finger travel distances by at least one order of magnitude
- Acceptance has been slow despite the dedicated efforts of some devotees
- tit takes about 1 week of regular typing to make the switch, but most users have been unwilling to invest the effort

*** QWERTY**

- Keep frequently used letters apart,
- Slow down users to avoid key jamming
- Dvorak
 - Reduces finger travel time
 - Increases speed, reduces errors

Other Keyboard Layouts

- Potential for higher rates of information input
 - Courtroom recorders (300 words per minute)
 - * Piano Keyboard
 - *Allows several finger presses at once
 - Responsive to different pressures and durations
 - Chord keyboards
 - *****One-handed keyboards
 - *Useful for tasks requiring one hand manipulation of an object

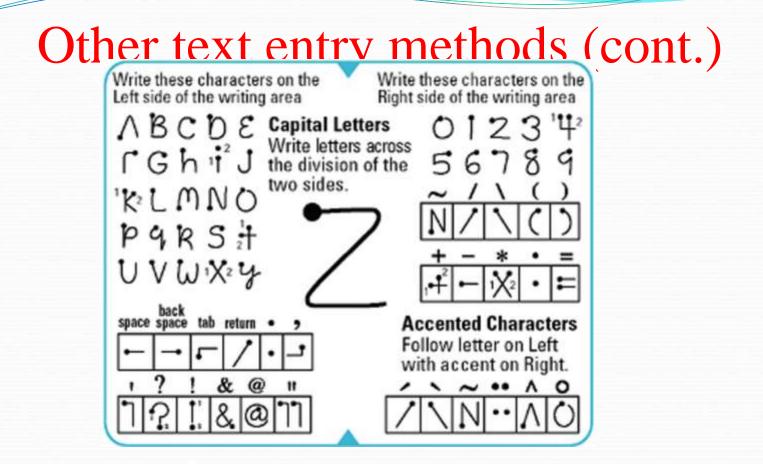
Keyboards and Keypads

- Reduction of ulnar abduction and pronation
- Ulnar tunnel syndrome
 - Ulnar tunnel syndrome is caused by pressure on the ulnar nerve at the wrist
 - * This nerve is found on the pinkie-finger side of the wrist



Number Pads

- Number Pads phone pads versus calculator pads
 - Most computer keyboards use the calculator layout
 - Performance is slightly better with the phone layout



Keyboards Layouts

- * Keyboard for those with disabilities
 - Combination of small hand movements and small finger presses selects the letters and controls the cursor
 - No finger or wrist movement is needed
 - Helpful to users with carpal tunnel syndrome or arthritis
 - Each dome slides into one of eight zones to type a character
 - Either dome can slide first or move both at the same time.
 - Domes slide toward the center of their color or character zones. (not directly at the characters)
 - Slide the right dome to the zone of the character you wish to type; slide the left dome to the color of that character.

Another method is to handwrite on a touch sensitive surface, typically with a stylus using Graffiti® on the Palm devices

Pointing Devices

Pointing devices are applicable in six types of interaction tasks:

- 1. Select:
 - user chooses from a set of items.
 - used for traditional menu selection, identification of a file in a directory, or marking of a part in an automobile design.
- 2. Position:
 - user chooses a point in a one-, two-, three-, or higher-dimensional space
 - * used to create a drawing, to place a new window, or to drag a block of text in a figure.
- 3. Orient:
 - * user chooses a direction in a two-, three-, or higher-dimensional space.
 - direction may simply rotate a symbol on the screen, indicate a direction of motion for a space ship, or control the operation of a robot arm.
- * 4. Path:
 - user rapidly performs a series of position and orient operations.
 - * may be realized as a curving line in a drawing program, the instructions for a cloth cutting machine, or the route on a map.
- 5. Quantify:
 - user specifies a numeric value.
 - usually a one-dimensional selection of integer or real values to set parameters, such as the page number in a document, the velocity of a ship, or the amplitude of a sound.
- * 6. Text:
 - * user enters, moves, and edits text in a two-dimensional space. The
 - * pointing device indicates the location of an insertion, deletion, or change.
 - * more elaborate tasks, such as centering; margin setting; font sizes; highlighting, such as boldface or underscore; and page layout.

Pointing Devices

Direct control devices (easy to learn and use, but hand may obscure display)

- Lightpen
- Touchscreen
- Stylus

Indirect control devices (take time to learn)

- Mouse
- Trackball
- Joystick
- Trackpoint
- Touchpad
- Graphics tablet

Non-standard devices and strategies (for special purposes)

- Multitouch tablets and displays
- Bimanual input
- Eye-trackers
- Sensors
- 3D trackers
- DataGloves
- Boom Chameleon
- Haptic feedback
- Foot controls
- Tangible user interfaces
- Digital paper

Criteria for success

- Speed and accuracy
- Efficacy for task
- Learning time
- Cost and reliability
- Size and weight

Direct-control pointing devices

lightpen

- enabled users to point to a spot on a screen and to perform a select, position, or other task
- t allows direct control by pointing to a spot on the display
- incorporates a button for the user to press when the cursor is resting on the desired spot on the screen
- Iightpen has three disadvantages: users' hands obscured part of the screen, users had to remove their hands from the keyboard, and users had to pick up the lightpen

Direct-control pointing devices (cont.)

Touchscreen

- allows direct control touches on the screen using a finger
- early designs were rightly criticized for causing fatigue, handobscuring-the-screen, hand-off-keyboard, imprecise pointing, and the eventual smudging of the display
- lift-off strategy enables users to point at a single pixel
- the users touch the surface
- then see a cursor that they can drag around on the display
- when the users are satisfied with the position, they lift their fingers off the display to activate
- can produce varied displays to suit the task
- are fabricated integrally with display surfaces

Direct-control pointing devices (cont.)

Tablet PCs and Mobile Devices:

- Natural to point on the LCD surface
- Stylus
- Keep context in view
- Pick up & put down stylus
- Gestures and handwriting recognition

Indirect pointing devices

mouse

•••

the hand rests in a comfortable position, buttons on the mouse are easily pressed, even long motions can be rapid, and positioning can be precise

trackball

 usually implemented as a rotating ball 1 to 6 inches in diameter that moves a cursor

joystick

- are appealing for tracking purposes
- graphics tablet
 - \diamond a touch-sensitive surface separate from the screen
- touchpad
 - built-in near the keyboard offers the convenience and precision of a touchscreen while keeping the user's hand off the display surface

Comparison of pointing devices

Human-factors variables

- * speed of motion for short and long distances
- ✤ accuracy of positioning
- error rates
- learning time
- user satisfaction

Other variables

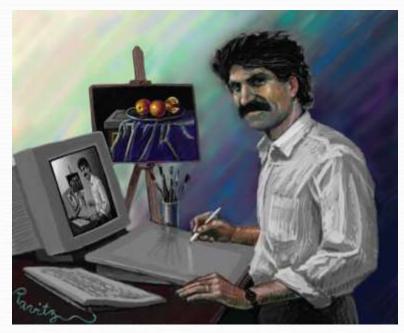
- cost
- durability
- space requirements
- * weight
- * left- versus right-hand use
- * likelihood to cause repetitive-strain injury
- * compatibility with other systems

Comparison of pointing devices (cont.)

Some results

- direct pointing devices faster, but less accurate
- graphics tablets are appealing when user can remain with device for long periods without switching to keyboard
- mouse is faster than isometric joystick
- for tasks that mix typing and pointing, cursor keys a faster ar users to a mouse
- * muscular strain is low for cursor keys

Fitts' Law


- Index of difficulty = log2 (2D / W)
- Time to point = C1 + C2 (index of difficulty)
- * C1 and C2 and constants that depend on the device
- ✤ Index of difficulty is log2 (2*8/1) = log2(16) = 4 bits
- A three-component equation was thus more suited for the high-precision pointing task:
- Time for precision pointing = C1 + C2 (index of difficulty) + C3 log2 (C4 / W)

Novel devices

- 1. Foot controls
- 2. Eye-tracking
- 3. Multiple-degrees-of-freedom devices
- 4. DataGlove
- 5. Haptic feedback
- 6. Bimanual input
- 7. Ubiquitous computing and tangible user interfaces
- 8. Handheld devices
- 9. Smart pens
- 10. Table top touch screens
- 11. Game controllers

Novel devices (cont.)

Speech and auditory interfaces

- Speech recognition still does not match the fantasy of science fiction:
 - demands of user's working memory
 - background noise problematic
 - variations in user speech performance impacts effectiveness
 - most useful in specific applications, such as to benefit handicapped users

Opportunities

- When users have vision impairments
- When the speaker's hands are busy
- When mobility is required
- When the speaker's eyes are occupied
- When harsh or cramped conditions preclude use of a keyboard

Technologies

- Speech store and forward
- Discrete-word recognition
- Continuous-speech recognition
- Voice information systems
- Speech generation

Obstacles to speech recognition

- Increased cognitive load compared to pointing
- Interference from noisy environments
- Unstable recognition across changing users, environments, and time

Obstacles to speech output

- Slow pace of speech output when compared to visual displays
- Ephemeral nature of speech
- Difficulty in scanning/searching

Discrete word recognition

•••

- recognize individual words spoken by a specific person; can work with 90- to 98percent reliability for 20 to 200 word vocabularies
- Speaker-dependent training, in which the user repeats the full vocabulary once or twice
- Speaker-independent systems are beginning to be reliable enough for certain commercial applications
- been successful in enabling bedridden, paralyzed, or otherwise disabled people
- also useful in applications with at least one of the following conditions:
 - speaker's hands are occupied
 - mobility is required
 - speaker's eyes are occupied
 - harsh or cramped conditions preclude use of keyboard
- voice-controlled editor versus keyboard editor
 - lower task-completion rate
 - lower error rate
- use can disrupt problem solving

Continuous-speech recognition

Not generally available:

•••

•••

- difficulty in recognizing boundaries between spoken words
- normal speech patterns blur boundaries
- many potentially useful applications if perfected

Speech store and forward

- Voice mail users can
 - receive messages
 - replay messages
 - reply to caller
 - forward messages to other users, delete messages
 - archive messages

Systems are low cost and reliable.

Voice information systems

- Stored speech commonly used to provide information about tourist sites, government services, after-hours messages for organizations
- Low cost
- Voice prompts
- Deep and complex menus frustrating
- Slow pace of voice output, ephemeral nature of speech, scanning and searching problems
- Voice mail
- Handheld voice recorders
- Audio books
- Instructional systems

Speech generation

•••

**

- Michaelis and Wiggins (1982) suggest that speech generation is "frequently preferable" under these circumstances:
 - ***** The message is simple.
 - * The message is short.
 - The message will not be referred to later.
 - The message deals with events in time.
 - ***** The message requires an immediate response.
 - ***** The visual channels of communication are overloaded.
 - The environment is too brightly lit, too poorly lit, subject to severe vibration, or otherwise unsuitable for transmission of visual information.
 - The user must be free to move around.
 - The user is subjected to high G forces or anoxia

Audio tones, audiolization, and music

- Sound feedback can be important:
 - to confirm actions
 - offer warning
 - for visually-impaired users
 - music used to provide mood context, e.g. in games
 - can provide unique opportunities for user, e.g. with simulating various musical instruments

Displays – Small and Large

- The display has become the primary source of feedback to the user from the computer
 - The display has many important features, including:
 - Physical dimensions (usually the diagonal dimension and depth)
 - *** Resolution (the number of pixels available)**
 - Number of available colors, color correctness
 - Luminance, contrast, and glare
 - Power consumption
 - Refresh rates (sufficient to allow animation and video)
 - Cost
 - Reliability

Displays – Small and Large (cont.)

Usage characteristics distinguish displays:

- Portability
- Privacy
- Saliency
- Ubiquity
- Simultaneity

Display technology

Monochrome displays

•••

**

**

•••

•••

•••

are adequate, and are attractive because of their lower cost

RGB shadow-mask displays

small dots of red, green, and blue phosphors packed closely

Raster-scan cathode-ray tube (CRT)

- electron beam sweeping out lines of dots to form letters
- refresh rates 30 to 70 per second
- Liquid-crystal displays (LCDs)
- voltage changes influence the polarization of tiny capsules of liquid crystals
- flicker-free
- size of the capsules limits the resolution

Plasma panel

 rows of horizontal wires are slightly separated from vertical wires by small glass-enclosed capsules of neon-based gases

Light-emitting diodes (LEDs)

- certain diodes emit light when a voltage is applied
- arrays of these small diodes can be assembled to display characters

Display technology (cont.)

Electronic ink

- Paper like resolution
- Tiny capsules with negatively and positively charged particles
- Braille displays
 - Pins provide output for the blind

Displays – Large and Small (cont.)

Large displays

- Informational wall displays
- Interactive wall displays
- Multiple desktop displays

Displays – Large and Small (cont.)

Heads-up and helmet mounted displays

- A heads-up display can, for instance, project information on a partially silvered widescreen of an airplane or car
- A helmet/head mounted display (HMD) moves the image with the user
- 3D images

Mobile device displays

- Currently mobile devices used for brief tasks, except for game playing
- Optimize for repetitive tasks
- Custom designs to take advantage of every pixel
- DataLens allows compact overviews
- Web browsing difficult
- Okay for linear reading, but making comparisons can be difficult

Animation, image, and video

- Accelerated graphics hardware
- More information shared and downloaded on the web
- Scanning of images and OCR
- Digital video
- CD-ROMs and DVDs
- Compression and decompression through MPEG
- Computer-based video conferencing