
Design and Analysis of Algorithms 

 

1 

GVP College of  Engineering for Women 

 
 
 
 

UNIT 

3 

 
 
 
 
 

Greedy Method
 

GENERAL METHOD 

 
Greedy is the most straight forward design technique. Most of the problems have n 

inputs and require us to obtain a subset that satisfies some constraints. Any subset 

that satisfies these constraints is called a feasible solution. We need to find a feasible 

solution that either maximizes or minimizes the objective function. A feasible solution 

that does this is called an optimal solution. 
 

The greedy method is a simple strategy of progressively building up a solution, one 

element at a time, by choosing the best possible element at each stage. At each stage, 

a decision is made regarding whether or not a particular input is in an optimal solution. 

This is done by considering the inputs in an order determined by some selection 

procedure. If the inclusion of the next input, into the partially constructed optimal 

solution will result in an infeasible solution then this input is not added to the partial 

solution. The selection procedure itself is based on some optimization measure. Several 

optimization measures are plausible for a given problem. Most of them, however, will 

result  in  algorithms  that  generate  sub-optimal  solutions.  This  version  of  greedy 

technique is called subset paradigm. Some problems like Knapsack, Job sequencing 

with deadlines and minimum cost spanning trees are based on subset paradigm. 
 

For the problems that make decisions by considering the inputs in some order, each 

decision is made using an optimization criterion that can be computed using decisions 

already made. This version of greedy method is ordering paradigm. Some problems like 

optimal storage on tapes, optimal merge patterns and single source shortest path are 

based on ordering paradigm. 
 

CONTROL ABSTRACTION 

Algorithm Greedy (a, n) 
// a(1 : n) contains the ‘n’ inputs 
{ 

solution := ;                   // initialize the solution to empty 

for i:=1 to n do 
{ 

x := select (a); 

if  feasible (solution, x) then 

solution := Union (Solution, x); 
} 

return solution; 
} 

 

Procedure Greedy describes the essential way that a greedy based algorithm will look, 

once a particular problem is chosen and the functions select, feasible and union are 

properly implemented. 
 

The function select selects an input from ‘a’, removes it and assigns its value to ‘x’. 

Feasible is a Boolean valued function, which determines if ‘x’ can be included into the 

solution vector. The function Union combines ‘x’ with solution and updates the objective 

function. 
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KNAPSACK PROBLEM 
 

Let us apply the greedy method to solve the knapsack problem. We are given ‘n’ 

objects and a knapsack. The object ‘i’ has a weight wi and the knapsack has a capacity 
‘m’. If a fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit of pi 

xi is earned. The objective is to fill the knapsack that maximizes the total profit earned. 

 
Since the knapsack capacity is ‘m’, we require the total weight of all chosen objects to 
be at most ‘m’. The problem is stated as: 

 
maximize 

 

 
subject to 

n 

 pi  xi 

i  1 

n 

 ai     xi   M        where, 0 < xi < 1 and 1 < i <  n 
i  1

 
The profits and weights are positive numbers. 

 

 
Algorithm 

 
If the objects are already been sorted into non-increasing order of p[i] / w[i] then the 

algorithm given below obtains solutions corresponding to this strategy. 
 

Algorithm GreedyKnapsack (m, n) 
 

// P[1 : n] and w[1 : n] contain the profits and weights respectively of 
 

// Objects ordered so that p[i] / w[i] > p[i + 1] / w[i + 1]. 
 

// m is the knapsack size and x[1: n] is the solution vector. 
 

{ 

for i := 1 to n do x[i]  := 0.0                   // initialize x 

U := m; 
for i := 1 to n do 
{ 

if  (w(i) > U) then break; 

x [i] := 1.0; U := U – w[i]; 
} 
if (i < n) then x[i] := U / w[i]; 

} 
 

 
Running time: 

 
The objects are to be sorted into non-decreasing order of pi / wi ratio. But if we 
disregard the time to initially sort the objects, the algorithm requires only O(n) time. 

 

 
Example: 

 
Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, p2, p3) = 
(25, 24, 15) and (w1, w2, w3) = (18, 15, 10). 
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1.  First, we try to fill the knapsack by selecting the objects in some order: 
 

x1 x2 x3  wi  xi  pi  xi 

1/2 1/3 1/4 18 x 1/2 + 15 x 1/3 + 10 x 1/4 

= 16.5 

25 x 1/2 + 24 x 1/3 + 15 x 1/4 = 

24.25 
 

 

2.  Select the object with the maximum profit first (p = 25). So, x1 = 1 and profit 

earned is 25. Now, only 2 units of space is left, select the object with next largest 
profit (p = 24). So, x2  = 2/15 

 
x1 x2 x3  wi  xi  pi  xi 

1 2/15 0 18 x 1  + 15 x 2/15 = 20 25 x 1 + 24 x 2/15 = 28.2 

 

 
 

3.  Considering the objects in the order of non-decreasing weights wi. 
 

x1 x2 x3  wi  xi  pi  xi 

0 2/3 1 15 x 2/3 + 10 x 1 = 20 24 x 2/3 + 15 x 1 = 31 

 

 

4. Considered the objects in the order of the ratio pi / wi . 
 

p1/w1 p2/w2 p3/w3 

25/18 24/15 15/10 

1.4 1.6 1.5 

 

 

Sort the objects in order of the non-increasing order of the ratio pi / xi. Select the 
object with the maximum pi / xi ratio, so, x2 = 1 and profit earned is 24. Now, only 5 
units of space is left, select the object with next largest pi / xi ratio, so x3 = ½ and the 
profit earned is 7.5. 

x1 x2 x3  wi  xi  pi  xi 

0 1 1/2 15 x 1 + 10 x 1/2 = 20 24 x 1 + 15 x 1/2 = 31.5 

 

 

This solution is the optimal solution. 
 

 
 

 

 

JOB SEQUENCING WITH DEADLINES 

 
When we are given a set of ‘n’ jobs. Associated with each Job i, deadline di > 0 and 
profit Pi  > 0. For any job ‘i’ the profit pi is earned iff the job is completed by its 
deadline. Only one machine is available for processing jobs. An optimal solution is the 
feasible solution with maximum profit. 

 
Sort the jobs in ‘j’ ordered by their deadlines. The array d [1 : n] is used to store the 

deadlines of the order of their p-values. The set of jobs j [1 : k] such that j [r], 1 ≤ r ≤ 

k are the jobs in ‘j’ and d (j [1]) ≤ d (j[2]) ≤ . . . ≤ d (j[k]). To test whether J U {i} is 

feasible, we have just to insert i into J preserving the deadline ordering and then verify 

that d [J[r]] ≤ r, 1 ≤ r ≤ k+1. 
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Example: 

 
Let n = 4, (P1, P2, P3, P4,) = (100, 10, 15, 27) and (d1  d2  d3 d4) = (2, 1, 2, 1). The 
feasible solutions and their values are: 

 
S. No Feasible Solution Procuring 

sequence 
Value Remarks 

1 1,2 2,1 110  

2 1,3 1,3 or 3,1 115  

3 1,4 4,1 127 OPTIMAL 

4 2,3 2,3 25  

5 3,4 4,3 42  

6 1 1 100  

7 2 2 10  

8 3 3 15  

9 4 4 27  
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Algorithm: 

 
The algorithm constructs an optimal set J of jobs that can be processed by their 
deadlines. 

 
Algorithm GreedyJob (d, J, n) 

 

// J is a set of jobs that can be completed by their deadlines. 
 

{ 
J := {1}; 

for i := 2 to n do 
{ 

if (all jobs in J U {i} can be completed by their dead lines) 

then J := J U {i}; 
} 

} 
 

 
 

OPTIMAL MERGE PATERNS 
 

Given ‘n’ sorted files, there are many ways to pair wise merge them into a single sorted 

file. As, different pairings require different amounts of computing time, we want to 

determine an optimal (i.e., one requiring the fewest comparisons) way to pair wise 

merge ‘n’ sorted files together. This type of merging is called as 2-way merge patterns. 

To merge an n-record file and an m-record file requires possibly n + m record moves, 

the obvious choice choice is, at each step merge the two smallest files together. The 

two-way merge patterns can be represented by binary merge trees. 
 

 
Algorithm to Generate Two-way Merge Tree: 

 
struct treenode 
{ 

treenode * lchild; 

treenode * rchild; 
}; 

 

Algorithm TREE (n) 
// list is a global of n single node binary trees 
{ 

for i := 1 to n – 1 do 
{ 

pt   new treenode 

(pt  lchild)   least (list);           //  merge two  trees  with  smallest 

lengths 
(pt  rchild)  least (list); 

(pt  weight)  ((pt  lchild)  weight) + ((pt  rchild)  weight); 
insert (list, pt);

 

 
tree 
} 

} 

return least (list);                                  // The tree left in list is the     merge
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Example 1: 

 
Suppose we are having three sorted files X1, X2 and X3 of length 30, 20, and 10 records 
each. Merging of the files can be carried out as follows: 

 

S.No First Merging Record moves in 

first merging 

Second 

merging 

Record moves in 

second merging 

Total no. of 

records moves 
1. X1 & X2 = T1 50 T1 & X3 60 50 + 60 = 110 

2. X2 & X3 = T1 30 T1 & X1 60 30 + 60 = 90 

 

The Second case is optimal. 
 

 
 

Example 2: 
 

Given five files (X1, X2, X3, X4, X5) with sizes (20, 30, 10, 5, 30). Apply greedy rule to 

find optimal way of pair wise merging to give an optimal solution using binary merge 

tree representation. 
 

 
Solution: 

 

20  30  10  5  30 

 

X1 
  

X2 
  

X3 
  

X4 
  

X5 

 
 

Merge X4 and X3 to get 15 record moves.  Call this Z1. 
 

 
X1         X2           Z1             X5 

 

20          30           15              30 
 

 
5         10 

 

 
 

Merge Z1 and X1 to get 35 record moves. Call this Z2. 
 
 

X2                Z2               X5 
 

30               35               30 
 

 
Z1   15         20   X1 

 

 
 

X4     5          10    X3 
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Merge X2 and X5 to get 60 record moves. Call this Z3. 
 
 

Z2                           Z3
 

35 
 

 
Z1  15         20 

 

X1 
 

5          10 

 

60 
 

 
 
30         30 
 

X5         X2

 

X4        X3 
 
 

Merge Z2 and Z3 to get 90 record moves. This is the answer. Call this Z4. 
 
 

Z4 
 

95 
 
 

Z2   35                    60   Z3 
 

 
Z1  15        20        30       30

 

 
5        10 

 

X1        X5      X2

 

X4      X3 
 

 

Therefore the total number of record moves is 15 + 35 + 60 + 95 = 205. This is an 
optimal merge pattern for the given problem. 

 

 
 

Huffman Codes 
 

Another application of Greedy Algorithm is file compression. 
 

Suppose that we have a file only with characters a, e, i, s, t, spaces and new lines, the 

frequency of appearance of a's is 10, e's fifteen, twelve i's, three s's, four t's, thirteen 

banks and one newline. 

 
Using a standard coding scheme, for 58 characters using 3 bits for each character, the 
file requires 174 bits to represent. This is shown in table below. 

 

Character  
 

A 

Code  
 

000 

 Frequency 
 

10 

Total bits 
 

30 

E 001  15 45 

I 010  12 36 

S 011  3 9 

T 100  4 12 

Space 101  13 39 

New line 110  1 3 
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Representing by a binary tree, the binary code for the alphabets are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 

a             e        i             s         l           sp          nl 
 
 

The representation of each character can be found by starting at the root and recording 
the path. Use a 0 to indicate the left branch and a 1 to indicate the right branch. 

 

If the character ci  is at depth di  and occurs fi times, the cost of the code is equal to 

 di  fi 
 

With this representation the total number of bits is 3x10 + 3x15 + 3x12 + 3x3 + 3x4 + 

3x13 + 3x1 = 174 
 

A better code can be obtained by with the following representation. 
 
 
 
 
 
 
 

 

nl 
 

 

a             e         i             s         l           sp 
 
 

The basic problem is to find the full binary tree of minimal total cost. This can be done 

by using Huffman coding (1952). 
 

 
Huffman's Algorithm: 

 
Huffman's algorithm can be described as follows: We maintain a forest of trees. The 

weights of a tree is equal to the sum of the frequencies of its leaves. If the number of 

characters is 'c'. c - 1 times, select the two trees T1 and T2, of smallest weight, and 

form a new tree with sub-trees T1 and T2. Repeating the process we will get an optimal 

Huffman coding tree. 
 

 
Example: 

 
The initial forest with the weight of each tree is as follows: 

 
10          15          12          3            4           13         1 

a             e             i            s            t            sp          nl 
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The two trees with the lowest weight are merged together, creating the forest, the 
Huffman algorithm after the first merge with new root T1 is as follows: The total weight 
of the new tree is the sum of the weights of the old trees. 

 

 
10          15          12          4            13          4

 

a             e            i t           sp T1 

 
s           nl

 
 

We again select the two trees of smallest weight. This happens to be T1 and t, which 
are merged into a new tree with root T2 and weight 8. 

 
10         15         12          13             8 

a             e            i           sp             T2 

 
T1          t 

s           nl 

 
In next step we merge T2 and a creating T3, with weight 10+8=18. The result of this 
operation in 

 
 

15          12           13           18 

e               i            sp            T3 
 

 
T2         a 

 

 
T1         t 

s       nl 

 

After third merge, the two trees of lowest weight are the single node trees representing 

i and the blank space. These trees merged into the new tree with root T4. 
 

 
 

15                    25                     18 

e                     T4                     T3 

 

i            sp        T2         a 

T1          t 

s       nl 
 
 
 
 
 
 
 
 

 



Design and Analysis of Algorithms 

 

10 

GVP College of  Engineering for Women 

 
 
 
 
 
 

 

The fifth step is to merge the trees with roots e and T3. The results of this step is 

 
25                                   33 

T4                                   T5 

 
i            sp                   T3           e 

 

 
T2          a 

T1          t 

s        nl 
 
 

Finally, the optimal tree is obtained by merging the two remaining trees. The optimal 

trees with root T6 is: 
 
 

T6 

0           1 
 

T5                  T4 
0        1      0        1 

T3           e         i         sp 
0         1 

 

T2          a 
0        1 

 

T1         t 
0        1 

 

s        nl 
 
 

 
The full binary tree of minimal total cost, where all characters are obtained in the 

leaves, uses only 146 bits. 
 

 
Character Code Frequency Total bits 

 

(Code bits X frequency) 

A 001 10 30 

E 01 15 30 

I 10 12 24 

S 00000 3 15 

T 0001 4 16 

Space 11 13 26 

New line 00001 1 5 

  Total : 146 
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GRAPH ALGORITHMS 
 

 
Basic Definitions: 

 
  Graph G is a pair (V, E), where V is a finite set (set of vertices) and E is a finite 

set of pairs from V (set of edges). We will often denote n := |V|, m := |E|. 
 

     Graph G can be directed, if E consists of ordered pairs, or undirected, if E 

consists of unordered pairs. If (u, v)  E, then vertices u, and v are adjacent. 

 
     We can assign weight function to the edges: wG(e) is a weight of edge e  E. 

The graph which has such function assigned is called weighted. 

 
  Degree of a vertex v is the number of vertices u for which (u, v)  E (denote 

deg(v)). The number of incoming edges to a vertex v is called in–degree of 

the vertex (denote indeg(v)). The number of outgoing edges from a vertex is 

called out-degree (denote outdeg(v)). 
 

 
Representation of Graphs: 

 
Consider graph G = (V, E), where V= {v1, v2,….,vn}. 

 
Adjacency matrix represents the graph as an n x n matrix A = (ai,j), where 

 

a i,  j 
  1,  if (vi , v j )  E, 

   

  0,  otherwise

 

The matrix is symmetric in case of undirected graph, while it may be asymmetric if 

the graph is directed. 
 

We may consider various modifications. For example for weighted graphs, we may 

have
 

a i,  j 
 w (vi, v j ), 

   
 default, 

if (vi , v j )  E, 

otherwise,

 

Where default is some sensible value based on the meaning of the weight function 

(for example, if weight function represents length, then default can be , meaning 

value larger than any other value). 
 

Adjacency List: An array Adj [1 . . . . . . . n] of pointers where for 1 <  v <  n, Adj [v] 

points to a linked list containing the vertices which are adjacent to v (i.e. the vertices 

that can be reached from v by a single edge). If the edges have weights then these 

weights may also be stored in the linked list elements. 
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Paths and Cycles: 
 

A path is a sequence of vertices (v1, v2, . . . . . . , vk), where for all i, (vi, vi+1)  E. A 
path is simple if all vertices in the path are distinct. 

 
A (simple) cycle is a sequence of vertices (v1, v2, . . . . . . , vk, vk+1 = v1), where for 
all i, (vi, vi+1)  E and all vertices in the cycle are distinct except pair v1, vk+1. 

 

 
 

Subgraphs and Spanning Trees: 
 

Subgraphs: A graph G’ = (V’, E’) is a subgraph of graph G = (V, E) iff V’   V and E’ 
E. 

 
The undirected graph G is connected, if for every pair of vertices u, v there exists a 

path from u to v. If a graph is not connected, the vertices of the graph can be divided 

into connected components. Two vertices are in the same connected component iff 

they are connected by a path. 
 

Tree is a connected acyclic graph. A spanning tree of a graph G = (V, E) is a tree 

that contains all vertices of V and is a subgraph of G. A single graph can have multiple 

spanning trees. 
 

Lemma 1: Let T be a spanning tree of a graph G. Then 
 

1.  Any two vertices in T are connected by a unique simple path. 
 

2.  If any edge is removed from T, then T becomes disconnected. 
 

3.  If we add any edge into T, then the new graph will contain a cycle. 
 

4.  Number of edges in T is n-1. 
 
 

Minimum Spanning Trees (MST): 
 

A spanning tree for a connected graph is a tree whose vertex set is the same as the 

vertex set of the given graph, and whose edge set is a subset of the edge set of the 

given graph. i.e., any connected graph will have a spanning tree. 

 
Weight of a spanning tree w (T) is the sum of weights of all edges in T. The Minimum 

spanning tree (MST) is a spanning tree with the smallest possible weight. 
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G: 

 
A gra p h G:  

T h re e ( of  ma n y p o s s ib l e)  s p a n n in g t re e s f ro m gra p h G:

 
 

 
2                                                                                    2 

 

4 

G:  3                     5                                                              3 
6 

 

1                                                                                    1 
 

 
A  w e ig ht e d  gra p h  G:               T h e  min i ma l  s p a n n in g  t re e  f ro m  w e ig ht e d  gra p h  G:  

 

 
Here are some examples: 

 

 

To explain further upon the Minimum Spanning Tree, and what it applies to, let's 
consider a couple of real-world examples: 

 

1. One practical application of a MST would be in the design of a network. For 

instance, a group of individuals, who are separated by varying distances, wish 

to be connected together in a telephone network. Although MST cannot do 

anything about the distance from one connection to another, it can be used to 

determine  the  least  cost  paths  with  no  cycles  in  this  network,  thereby 

connecting everyone at a minimum cost. 
 

2. Another useful application of MST would be finding airline routes. The vertices of 

the graph would represent cities, and the edges would represent routes between 
the cities. Obviously, the further one has to travel, the more it will cost, so MST 
can be applied to optimize airline routes by finding the least costly paths with no 
cycles. 

 

 
 

To explain how to find a Minimum Spanning Tree, we will look at two algorithms: the 

Kruskal algorithm and the Prim algorithm. Both algorithms differ in their methodology, 

but both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim’s 

algorithm uses vertex connections in determining the MST. 
 

 
 

Kruskal’s Algorithm 
 

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. 

picking an edge with the least weight in a MST). 
 

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the 

shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges 

have been added. Sometimes two or more edges may have the same cost. The order in 

which the edges are chosen, in this case, does not matter. Different MSTs may result, 

but they will all have the same total cost, which will always be the minimum cost. 
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Algorithm: 

 
The algorithm for finding the MST, using the Kruskal’s method is as follows: 

 
Algorithm Kruskal (E, cost, n, t) 

// E is the set of edges in G. G has n vertices. cost [u, v] is the 

// cost of edge (u, v). ‘t’ is the set of edges in the minimum-cost spanning tree. 

// The final cost is returned. 

{ 

Construct a heap out of the edge costs using heapify; 
for i := 1 to n do parent [i] := -1;

 
i := 0; mincost := 0.0; 

// Each vertex is in a different set.

while ((i < n -1) and (heap not empty)) do 
{ 

Delete a minimum cost edge (u, v) from the heap and 

re-heapify using Adjust; 

j := Find (u); k := Find (v); 

if  (j  k) then 
{ 

i := i + 1; 

t [i, 1] := u; t [i, 2] := v; 

mincost :=mincost + cost [u, v]; 

Union (j, k); 
} 

} 

if (i  n-1) then write ("no spanning tree"); 

else return mincost; 
} 

 

 
Running time: 

 
     The number of finds is at most 2e, and the number of unions at most n-1. 

Including the initialization time for the trees, this part of the algorithm has a 

complexity that is just slightly more than O (n + e). 
 

     We can add at most n-1 edges to tree T. So, the total time for operations on T is 

O(n). 
 

Summing up the various components of the computing times, we get O (n + e log e) as 

asymptotic complexity 
 

 
 

Example 1: 
 

 

1       
1 0      

2          50  

4  5        4 0 
30                               3 5 

 

4        25              5 
55  

20                           15  
6 
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Arrange all the edges in the increasing order of their costs: 
 

Cost 10 15 20 25 30 35 40 45 50 55 

Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6) 
 

The edge set T together with the vertices of G define a graph that has up to n 

connected components. Let us represent each component by a set of vertices in it. 

These vertex sets are disjoint. To determine whether the edge (u, v) creates a cycle, 

we need to check whether u and v are in the same vertex set. If so, then a cycle is 

created. If not then no cycle is created. Hence two Finds on the vertex sets suffice. 

When an edge is included in T, two components are combined into one and a union is 

to be performed on the two sets. 
 

Edge Cost Spanning Forest Edge Sets Remarks 

   

 
 
 

 
{1},   {2},   {3}, 

{4}, {5}, {6} 

 

 
(1, 2) 

 
10 

 

1         2            
 

 
{1, 2}, {3}, {4}, 

{5}, {6} 

 
The vertices 1 and 
2  are in  different 
sets, so the edge 

is combined 

 
(3, 6) 

 
15 

 

1         2               3              
 

6 

 
{1,  2},  {3,  6}, 
{4}, {5} 

 
The vertices 3 and 
6  are in  different 
sets, so the edge 
is combined 

 
(4, 6) 

 
20 

 

1         2               3           
 

4         6 

 
{1, 2}, {3, 4,  6}, 

{5} 

 
The vertices 4 and 
6  are in  different 
sets, so the edge 
is combined 

 
(2, 6) 

 
25 

 

1            2                     
 

4                    3 

 
6 

 
{1, 2, 3, 4,   6}, 

{5} 

 
The vertices 2 and 

6  are in  different 
sets, so the edge 
is combined 

 
(1, 4) 

 
30 

 
Reject 

 The vertices 1 and 

4 are in the same 

set, so the edge is 

rejected 

 
(3, 5) 

 
35 

 
1            2 

 

 
4                    5              3 

 
6 

 

 
 
 

{1, 2, 3, 4, 5, 6} 

 
The vertices 3 and 
5 are in the same 

set, so the edge is 
combined 
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MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM 

 
A given graph can have many spanning trees. From these many spanning trees, we 
have to select a cheapest one. This tree is called as minimal cost spanning tree. 

 
Minimal cost spanning tree is a connected undirected graph G in which each edge is 

labeled with a number (edge labels may signify lengths, weights other than costs). 

Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as 

small as possible 
 

The slight modification of the spanning tree algorithm yields a very simple algorithm for 

finding  an  MST. In  the  spanning  tree  algorithm,  any  vertex  not  in the tree  but 

connected to it by an edge can be added. To find a Minimal cost spanning tree, we 

must be selective - we must always add a new vertex for which the cost of the new 

edge is as small as possible. 
 

This simple modified algorithm of spanning tree is called prim's algorithm for finding an 

Minimal cost spanning tree. 
 

Prim's algorithm is an example of a greedy algorithm. 
 

 
Algorithm Algorithm Prim 

 
(E, cost, n, t) 
// E is the set of edges in G. cost [1:n, 1:n] is the cost 

// adjacency matrix of an n vertex graph such that cost [i, j] is 

// either a positive real number or  if no edge (i, j) exists. 
// A minimum spanning tree is computed and stored as a set of 

// edges in the array t [1:n-1, 1:2]. (t [i, 1], t [i, 2]) is an edge in 

// the minimum-cost spanning tree. The final cost is returned. 

{ 

Let (k, l) be an edge of minimum cost in E; 

mincost := cost [k, l]; 
t [1, 1] := k; t [1, 2] := l; 

for  i :=1 to n do                                   // Initialize near 

if  (cost [i, l] < cost [i, k]) then near [i] := l; 

else near [i] := k; 

near [k] :=near [l] := 0; 
for i:=2 to n -  1 do                               // Find n - 2 additional edges for t. 
{ 

Let j be an index such that near [j]  0 and 

cost [j, near [j]] is minimum; 

t [i, 1] := j; t [i, 2] := near [j]; 

mincost := mincost + cost [j, near [j]]; 

near [j] := 0 
for   k:= 1 to n do                                  // Update near[]. 

if ((near [k]  0) and (cost [k, near [k]] > cost [k, j])) 

then near [k] := j; 
} 

return mincost; 
} 
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Running time: 
 

We  do  the  same  set  of  operations  with  dist  as  in  Dijkstra's  algorithm  (initialize 
structure, m times decrease value, n - 1 times select minimum). Therefore, we get O 

(n2) time when we implement dist with array, O (n + E  log n) when we implement it 
with a heap. 

 

EXAMPLE 1: 

 
Use Prim’s Algorithm to find a minimal spanning tree for the graph shown below 
starting with the vertex A. 

 

4 
B                 D 

 

3        2      1         2    
4
 

4     E     1 
 

A               C        2            G 
6 

2      F      1 
 

 

SOLUTION: 







The stepwise progress of the prim’s algorithm is as follows: 
 
 

Step 1: 
 

 
 

B    3  D Vertex A     B C     D     E     F G 

   Status 0     1 1     1     1     1 1 
  E Dist. 0     3 6                    

A    0            6 
 

C 

 
   F 

 G Next      *     A     A     A     A     A      A
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Vertex A B C D E F G 

Status 0 0 1 1 1 1 1 
Dist. 0 3 2 4   

Next * A B B A A A 

 

Vertex A B C D E F G 

Status 0 0 0 1 1 1 1 
Dist. 0 3 2 1 4 2 

Next * A B C C C A 

 

Vertex A     B      C      D      E      F        G   

Status 0 0 0 0 0 1 0 
Dist. 0 3 2 1 2 1 1 

Next * A B C D G E 

 

 
 
 
 
 

Step 2: 
 
 

B    3 
 

 
A    0           2 

 

 
4   D 
 

 
  E

 

C           
F 

 

Step 3: 
 
 

B    3                   1     D 

 
4    E 

A   0            2                              G 
 

C           2     F 

 

 
Step 4: 

B    3                   1     D 
 

 
2     E 

A   0             2                          4    G 
 

C                        2     F 

Vertex   A     B     C     D     E     F       G 

Status   0     0     0     0     1     1       1 
Dist.     0     3     2     1     2     2       4 

Next      *     A     B     C     D     C      D

 

Step 5: 
 
 

B    3                   1     D 
 

 
2    E 

A   0            2                          1    G 
 

C           2     F 

 

 
 

Vertex   A     B     C     D     E     F       G 

Status   0     0     0     0     1     0       1 
Dist.     0     3     2     1     2     2       1 

Next      *     A     B     C     D     C      E

 
Step 6: 

 
 

B    3                   1     D 

 
2     E 

A   0            2                          1    G 
 

C           1     F 

Step 7: 
 

 
B    3                   1     D 

 

 
Vertex   A    B    C    D    E     F      G   

Status   0     0     0     0     0     0       0
 

2     E 
A   0            2                           1    G 

Dist.     0     3 
Next      *     A 

2     1     2     1       1 
B     C     D     G      E

 

C           1     F 
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Vertex 1 Vertex 2 

2 4 

3 4 

5 3 

1 2 

 

 
 
 
 
 

EXAMPLE 2: 
 

 
Considering the following graph, find the minimal spanning tree using prim’s algorithm. 

 
 

8 
1               4      4 

9 

4                   3             5 
1 

2               3       3 
4 

 
 

    4   9 


   4     4 
The cost adjacent matrix  is  9 4   


8   1   3 


8    


1    
3   3 


    4 

        3   4 


The minimal spanning tree obtained as: 

 

 

 
 

1                 4 
 

 

4     1          3                   5 
3 

 

2                 3 
 

 
 
 
 

The cost of Minimal spanning tree = 11. 
 

The steps as per the algorithm are as follows: 
 

Algorithm near (J) = k means, the nearest vertex to J is k. 
 

The algorithm starts by selecting the minimum cost from the graph. The minimum cost 

edge is (2, 4). 
 

K = 2, l = 4 

Min cost = cost (2, 4) = 1 
 

T [1, 1] = 2 
 

T [1, 2] = 4 
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for i = 1 to 5 

Begin 

i = 1 
is cost (1, 4) < cost (1, 2) 
8 < 4, No 

Than near (1) = 2 
 

 
i = 2 
is cost (2, 4) < cost (2, 2) 

1 < , Yes 

So near [2] = 4 
 

 
i = 3 

is cost (3, 4) < cost (3, 2) 

1 < 4, Yes 

So near [3] = 4 
 

 
i = 4 
is cost (4, 4) < cost (4, 2) 

 < 1, no 

So near [4] = 2 
 

 
i = 5 

is cost (5, 4) < cost (5, 2) 
4 < , yes 

So near [5] = 4 
 

 
end 

 
near [k] = near [l] = 0 

near [2] = near[4] = 0 

Near matrix 
 

 
 
 
 

2 
 

1    2      3     4     5 
 

 
 
 

2     4 

 
1     2     3     4     5 

 

 
 
 

2    4      4 

 
1     2     3     4     5 

 
 

 
2    4       4      2 

 

 

1    2      3     4     5 
 
 

 
2    4       4     2     4 

 

 

1    2      3     4     5 
 
 

 
2    0       4     0     4 

 

 

1      2     3      4    5 

Edges added to min spanning 
tree: 

 
T [1, 1] = 2 

T [1, 2] = 4 

 
for i = 2 to n-1 (4) do 

 
i = 2 

 
for j = 1 to 5 

j = 1 

near(1)0 and cost(1, near(1)) 

2  0 and cost (1, 2) = 4 
 
j = 2 

near (2) = 0 
 
j = 3 

is near (3)  0 

4  0 and cost (3, 4) = 3 
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2 0 0 0 4 

 

2 0 0 0 3 

 

 
 
 
 
 

j = 4 
near (4) = 0 

 
J = 5 
Is near (5)  0 

4  0 and cost (4, 5) = 4 

 
select the min cost from the 
above obtained costs, which is 
3 and corresponding J = 3 

 
min cost = 1 + cost(3, 4) 

= 1 + 3 = 4                                                                       T (2, 1) = 3 
T (2, 2) = 4 

T (2, 1) = 3 

T (2, 2) = 4 
 

 
 

Near [j] = 0                                  1     2     3     4     5 
i.e. near (3) =0 

 

 
for (k = 1 to n) 

 

K = 1 

is near (1)  0, yes 

2  0 
and cost (1,2) > cost(1, 3) 

4 > 9, No 
 

K = 2 
Is near (2) 0, No 

 
K = 3 
Is near (3)  0, No 

 
K = 4 
Is near (4)  0, No 

 

 
K = 5 
Is near (5)  0 

4  0, yes                                   1     2     3     4       5 

and is cost (5, 4) > cost (5, 3) 
4 > 3, yes 

than near (5) = 3 

 
i = 3 

 

for (j = 1 to 5) 
J = 1 

is near (1) 0 
2  0 

cost (1, 2) = 4 

 
J = 2 
Is near (2) 0, No 
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2 0 0 0 0 

 

 
 
 
 
 

J = 3 
Is near (3)  0, no 

Near (3) = 0 

 
J = 4 
Is near (4)  0, no 

Near (4) = 0 

 
J = 5 
Is near (5)  0 

Near (5) = 3  3  0, yes 

And cost (5, 3) = 3 

 
Choosing the min cost from 
the above obtaining costs 
which is 3 and corresponding J 
= 5                                                                                                 T (3, 1) = 5 

T (3, 2) = 3 

Min cost = 4 + cost (5, 3) 
= 4 + 3 = 7 

 

T (3, 1) = 5 

T (3, 2) = 3 

 

 

Near (J) = 0  near (5) = 0 

 

for (k=1 to 5) 
 

1 
 

2 
 

3 
 

4 
 

5 

 

k = 1 
 

is near (1)  0, yes 

and cost(1,2) > cost(1,5) 
4 > , No 

 

K = 2 
Is near (2)  0 no 

 

K = 3 
Is near (3)  0 no 

 

K = 4 
Is near (4)  0 no 

 

K = 5 
Is near (5)  0 no 

 

i = 4 

 

for J = 1 to 5 
J = 1 

Is near (1)  0 

2  0, yes 

cost (1, 2) = 4 

 
j = 2 
is near (2)  0, No 
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J = 3 
Is near (3)  0, No 

Near (3) = 0 

 
J = 4 
Is near (4)  0, No 

Near (4) = 0 

 
J = 5 
Is near (5)  0, No 

Near (5) = 0 

 
Choosing min cost from the 

above it is only '4' and 

corresponding J = 1 
 
Min cost = 7 + cost (1,2) 

= 7+4 = 11 

 
T (4, 1) = 1 

T (4, 2) = 2 
 
Near (J) = 0  Near (1) = 0 

for (k = 1 to 5) 

K = 1 
Is near (1)  0, No 

 
K = 2 
Is near (2)  0, No 

 
K = 3 

Is near (3)  0, No 
 
K = 4 
Is near (4)  0, No 

 
K = 5 
Is near (5)  0, No 

 
End. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T (4, 1) = 1 

T (4, 2) = 2 

0 0 0 0 0  

 

1     2     3      4      5 

 

 
 
 

4.8.7. The Single Source Shortest-Path Problem: DIJKSTRA'S ALGORITHMS 
 

In the previously studied graphs, the edge labels are called as costs, but here we think 

them as lengths. In a labeled graph, the length of the path is defined to be the sum of 

the lengths of its edges. 
 

In the single source, all destinations, shortest path problem, we must find a shortest 

path from a given source vertex to each of the vertices (called destinations) in the 

graph to which there is a path. 
 

Dijkstra’s algorithm is similar to prim's algorithm for finding minimal spanning trees. 
Dijkstra’s algorithm takes a labeled graph and a pair of vertices P and Q, and finds  the 
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shortest path between then (or one of the shortest paths) if there is more than one. 

The principle of optimality is the basis for Dijkstra’s algorithms. 
 

Dijkstra’s algorithm does not work for negative edges at all. 
 

The figure lists the shortest paths from vertex 1 for a five vertex weighted digraph. 
 

8                                                    0      1 
 

4 
1                 2      5 

 

2                     4             5 

 
3                4       3 

1 

Graph 

2      1          3 
 

 
3      1          3       4 
 

 
4      1          2 
 

 
6      1          3         4          5

 

Shortest Paths 
 

Algorithm: 
 

Algorithm Shortest-Paths (v, cost, dist, n) 
// dist [j], 1 < j < n, is set to the length of the shortest path 
// from vertex v to vertex j in the digraph G with n vertices. 

// dist [v] is set to zero. G is represented by its 
// cost adjacency matrix cost [1:n, 1:n]. 
{ 

for i :=1 to n do 
{ 

S [i] := false;                                   // Initialize S. 
dist [i] :=cost [v, i]; 

} 

S[v] := true; dist[v]  := 0.0;                         // Put v in S. 

for num := 2 to n – 1 do 
{ 

Determine n - 1 paths from v. 
Choose u from among those vertices not in S such that dist[u] is minimum; 

S[u] := true;                                               // Put u is S. 
for (each w adjacent to u with S [w] = false) do 

if (dist [w] > (dist [u] + cost [u,  w]) then      // Update distances 
dist [w] := dist [u] + cost [u, w]; 

} 
} 

 

 
Running time: 

 
Depends on implementation of data structures for dist. 

 
     Build a structure with  n elements                                  A 

 

     at most m = E  times decrease the value of  an item   mB 
 

     ‘n’ times select the  smallest value                                nC 

     For array A = O (n); B = O (1); C = O (n) which gives O (n2) total. 
 

     For heap A = O (n); B = O (log n); C = O (log n) which gives O (n + m log n) 
 

total. 
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Status 0 1 1 1 1 1 1 
Dist. 0 3 6    

Next * A A A A A A 

 

Vertex A B C D E F G 

Status 0 0 1 1 1 1 1 
Dist. 0 3 5 7   

Next * A B B A A A 

 



 
 
 
 
 

Example 1: 

 
Use Dijkstras algorithm to find the shortest path from A to each of the other six 
vertices in the graph: 

 

4 
B                 D 

 

3        2      1         2    
4
 

4     E     1 
 

A               C        2            G 
6 

2      F      1 
 

 

Solution: 

0   3 

3   0 

6    2 


6     -   -        -        -                


2   4    -     -    -            

0   1    4   2     -

   The cost adjacency matrix is     4   1   0   2    -   - 

    -     4    2   0    2 

4 

1 

-   -     2   -     2   0      1

                                                      -  -    -     -     4   1    1   0   

Here – means infinite 

   

The problem is solved by considering the following information: 
 

     Status[v] will be either ‘0’, meaning that the shortest path from v to v0 has 
definitely been found; or ‘1’, meaning that it hasn’t. 

 

  Dist[v] will be a number, representing the length of the shortest path from v to 

v0 found so far. 

 
  Next[v] will be the first vertex on the way to v0 along the shortest path found so 

far from v to v0 

 

The progress of Dijkstra’s algorithm on the graph shown above is as follows: 
 

Step 1: 
 
 

B    3 
 

 
 

A    0            6 
 

C 

 D 

 
 E 

 
  F 

 
 
 

 
 G 

Vertex   A     B     C     D     E     F       G

Step 2: 
 
 

B     3 

 

 
4        7   D 

 
2 

 E

A    0            5   G
 

C            
F 
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Vertex A B C D E F G 

Status 0 0 0 1 1 1 1 
Dist. 0 3 5 6 9 7 

Next * A B C C C A 
 

6 D    

 

F 7         
 

Vertex A B C D E F G 

Status 0 0 0 0 1 0 1 
Dist. 0 3 5 6 8 7 8 

Next * A B C D C F 

 

Status 0 0 0 0 0 0 1 
Dist. 0 3 5 6 8 7 8 

Next * A B C D C F 

 

 

B 
 

3 
 

9 
 

D Vertex   A     B     C     D     E     F       G 

        Status 0 0 0 0 0 0 0 
        Dist. 0 3 5 6 8 7 8 

0            5    8 G Next * A B C D C F 

C             F 
7            

 

 
 
 
 
 

 

Step 3: 
 

 
 
 

B   3 
 

  

9 
 

E  G 

A 0 5     
 

C 
 
 

Step 4: 
 

B    3                   7     D 

 
8     E 

Vertex   A     B     C     D     E     F       G 

Status   0     0     0     0     1     1       1 
Dist.     0     3     5     6     8     7       10

A   0             5 
 

C 

10   G 

7     F 

Next      *     A     B     C     D     C      D

 
 
 

Step 5: 
 
 
 

B    3                   6     D 

 
8     E 

A   0            5                           8    G 
 

C           7     F 
 

Step 6: 
 
 

B    3                   8     D 

 

 
 

Vertex   A     B      C      D      E      F        G  

 
8     E 

A   0            5                          8    G 
 

C                F 

 
Step 7: 

 
 
 

 
8     E 

A 
 
 
 
 
 
 
 
 

 
 


