
  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 1  

UNIT-II 

 

Divide and Conquer 
 

 

General Method 

 

Divide and conquer is a design strategy which is well known to breaking down 

efficiency barriers. When the method applies, it often leads to a large improvement in 

time complexity. For example, from O (n2) to O (n log n) to sort the elements. 

 

Divide and conquer strategy is as follows: divide the problem instance into two or 

more smaller instances of the same problem, solve the smaller instances recursively, 

and assemble the solutions to form a solution of the original instance. The recursion 

stops when an instance is reached which is too small to divide. When dividing the 

instance, one can either use whatever division comes most easily to hand or invest 

time in making the division carefully so that the assembly is simplified. 

 

Divide and conquer algorithm consists of two parts: 

 

Divide : Divide the problem into a number of sub problems. The sub problems 

are solved recursively. 
Conquer  : The solution to the original problem is then formed from the solutions 

to the sub problems (patching together the answers). 

 

Traditionally, routines in which the text contains at least two recursive calls are called 

divide and conquer algorithms, while routines whose text contains only one recursive 

call are not. Divide–and–conquer is a very powerful use of recursion. 

 

Control Abstraction of Divide and Conquer 

 

A control abstraction is a procedure whose flow of control is clear but whose primary 

operations are specified by other procedures whose precise meanings are left 

undefined. The control abstraction for divide and conquer technique is DANDC(P), 

where P is the problem to be solved. 
 

DANDC (P) 

{ 

if SMALL (P) then return S (p); 

else 
{ 

divide p into smaller instances p1, p2, …. Pk, k  1; 
apply DANDC to each of these sub problems; 
return (COMBINE (DANDC (p1) , DANDC (p2),…., DANDC (pk)); 

} 

} 
 

SMALL (P) is a Boolean valued function which determines whether the input size is 

small enough so that the answer can be computed without splitting. If this is so 

function ‘S’ is invoked otherwise, the problem ‘p’ into smaller sub problems. These 

sub problems p1, p2, . . . , pk are solved by recursive application of DANDC. 
 
 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 2  

 

If the sizes of the two sub problems are approximately equal then the computing 
time of DANDC is: 

 

  g (n) 
T  (n) =  

2 T(n/2) f (n) 

n small 

otherwise 
 

Where, T (n) is the time for DANDC on ‘n’ inputs 

g (n) is the time to complete the answer directly for small inputs and 

f (n) is the time for Divide and Combine 

 

Binary Search 

 
If we have ‘n’ records which have been ordered by keys so that x1 < x2 < … < xn . 

When we are given a element ‘x’, binary search is used to find the corresponding 
element from the list. In case ‘x’ is present, we have to determine a value ‘j’ such 
that a[j] = x (successful search). If ‘x’ is not in the list then j is to set to zero (un 
successful search). 

 

In Binary search we jump into the middle of the file, where we find key a[mid], and 

compare  ‘x’ with  a[mid]. If x  = a[mid]  then the desired record has been  found.    

If x < a[mid] then ‘x’ must be in that portion of the file that precedes a[mid], if there 

at all. Similarly, if a[mid] > x, then further search is only necessary in that past of 

the file which follows a[mid]. If we use recursive procedure of finding the middle key 

a[mid] of the un-searched portion of a file, then every un-successful comparison of 

‘x’ with a[mid] will eliminate roughly half the un-searched portion from consideration. 

 
Since the array size is roughly halved often each comparison between ‘x’  and  
a[mid], and since an array of length ‘n’ can be halved only about log2n times before 

reaching a trivial length, the worst case complexity of Binary search is about log2n 
 

Algorithm Algorithm 

BINSRCH (a, n, x) 
// array a(1 : n) of elements in increasing order, n  0, 

// determine whether ‘x’ is present, and if so, set j such that x = a(j) 

// else return j 

 

{ 

low :=1 ; high :=n ; 

while (low < high) do 
{ 

mid :=|(low + high)/2| 

if (x < a [mid]) then high:=mid – 1; 

else if (x > a [mid]) then low:= mid + 1 
else return mid; 

} 

return 0; 

} 
 

low and high are integer variables such that each time through the loop either ‘x’ is 

found or low is increased by at least one or high is decreased by at least one. Thus 

we have two sequences of integers approaching each other and eventually low will 

become greater than high causing termination in a finite number of steps if ‘x’ is not 

present. 

 

 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 3  

Example for Binary Search 

 

Let us illustrate binary search on the following 9 elements: 

 

Index 1 2 3 4 5 6 7 8 9 

Elements -15 -6 0 7 9 23 54 82 101 

 

The number of comparisons required for searching different elements is as follows: 

 

1. Searching for x = 101 

 

 

 

 

Number of comparisons = 4 

 

2. Searching for x = 82 

 

 

 
Number of comparisons = 3 

 

3. Searching for x = 42 

 
 

 

 
Number of comparisons = 4 

 

4. Searching for x = -14 

 
 

 
Number of comparisons = 3 

 

found 

 

 
 

low 

1 

high 

9 

mid 

5 
6 9 7 

8 9 8 
found 

 

 

 

low 

1 

high 

9 

mid 

5 
6 9 7 

6 6 6 

7 6 not found 

 

 

 

 

low 
1 

high 
9 

mid 
5 

1 4 2 

1 1 1 

2 1 not found 

 

Continuing in this manner the number of element comparisons needed to find each of 

nine elements is: 

 
Index 1 2 3 4 5 6 7 8 9 

Elements -15 -6 0 7 9 23 54 82 101 

Comparisons 3 2 3 4 1 3 2 3 4 

 

No element requires more than 4 comparisons to be found. Summing the 

comparisons needed to find all nine items and dividing by 9, yielding 25/9 or 

approximately 2.77 comparisons per successful search on the average. 

 

There are ten possible ways that an un-successful search may terminate depending 
upon the value of x. 

 
 

 

low 

1 

high 

9 

mid 

5 
   
   

   

 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 4  

If x < a[1], a[1] < x < a[2], a[2] < x < a[3], a[5] < x < a[6], a[6] < x < a[7] or 

a[7] < x < a[8] the algorithm requires 3 element comparisons to determine that ‘x’ 

is not present. For all of the remaining possibilities BINSRCH requires 4 element 

comparisons. Thus the average number of element comparisons for an unsuccessful 

search is: 

 

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4 

 

The time complexity for a successful search is O(log n) and for an unsuccessful 

search is Θ(log n). 
 

Successful  searches un-successful searches 

Θ(1), Θ(log  n), Θ(log  n) Θ(log n) 

Best average worst best, average and worst 

 

Analysis for worst case 

 

Let T (n) be the time complexity of Binary search 

The algorithm sets mid to [n+1 / 2] 

Therefore, 

T(0) = 0  

T(n) = 1 if x = a [mid] 

 = 1 + T([(n + 1) / 2] – 1) if x < a [mid] 

 = 1 + T(n – [(n + 1)/2]) if x > a [mid] 

 
Let us restrict ‘n’ to values of the form n = 2K – 1, where ‘k’ is a non-negative 

integer. The array always breaks symmetrically into two equal pieces plus middle 

element. 

 

2K – 1 - 1  
2K – 1 - 1 

   

 2K 1  

 

Algebraically this is 
 n  1

    2
K
  1  1  =  2K – 1 for K > 1 

 

 
 

Giving, 

     

 2   2  

 
T(0) = 0 

T(2k – 1) = 1 if x = a [mid] 

= 1 + T(2K - 1 – 1) if x < a [mid] 

= 1 + T(2k - 1 – 1) if x > a [mid] 

 

In the worst case the test x = a[mid] always fails, so 

w(0) = 0 

w(2k – 1) = 1 + w(2k - 1 – 1) 

 

 

 

 

 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 5  

This is now solved by repeated substitution: 
 

w(2k – 1) = 1 + w(2k - 1 – 1) 

= 1 + [1 + w(2k - 2 –1)] 

= 1 + [1 + [1 + w(2k - 3 –1)]] 

= . . . . . . . . 

= . . . . . . . . 

= i + w(2k - i – 1) 

 
For i < k, letting i = k gives w(2k –1) = K + w(0) = k 

But as 2K – 1 = n, so K = log2(n + 1), so 

w(n) = log2(n + 1) = O(log n) 
 

for n = 2K–1, concludes this analysis of binary search. 

 

Although it might seem that the restriction of values of ‘n’ of the form 2K–1 weakens 
the result. In practice this does not matter very much, w(n) is a  monotonic 
increasing function of ‘n’, and hence the formula given is a good approximation even 
when ‘n’ is not of the form 2K–1. 

 

External and Internal path length: 

 

The lines connecting nodes to their non-empty sub trees are called edges. A non- 

empty binary tree with n nodes has n–1 edges. The size of the tree is the number of 

nodes it contains. 

 

When drawing binary trees, it is often convenient to represent the empty sub trees 

explicitly, so that they can be seen. For example: 
 

The tree given above in which the empty sub trees appear as square nodes is as 

follows: 

 

The square nodes are called as external nodes E(T). The square node version is 

sometimes called an extended binary tree. The round nodes are called internal nodes 

I(T). A binary tree with n internal nodes has n+1 external nodes. 

 

The height h(x) of node ‘x’ is the number of edges on the longest path leading down 

from ‘x’ in the extended tree. For example, the following tree has heights written 

inside its nodes: 

 
 

 

 

  

 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 6  

 

 

The depth d(x) of node ‘x’ is the number of edges on path from the root to ‘x’. It is 

the number of internal nodes on this path, excluding ‘x’ itself. For example, the 

following tree has depths written inside its nodes: 
 

The internal path length I(T) is the sum of the depths of the internal nodes of ‘T’: 

I(T) =  
x  I(T ) 

 
d(x) 

 

The external path length E(T) is the sum of the depths of the external nodes: 

E(T) =  
x  E(T ) 

 
d(x) 

 

For example, the tree above has I(T) = 4 and E(T) = 12. 

 

A binary tree T with ‘n’ internal nodes, will have I(T) + 2n = E(T) external nodes. 

A binary tree corresponding to binary search when n = 16 is 

External square nodes, which lead for unsuccessful search. 

 

Let CN be the average number of comparisons in a successful search. 

C 'N be the average number of comparison in an un successful search. 

 

 

  

   

  

 

  

    

  

 

 12 

  10 14 

     11 13 15 

  2 3       16 

Represents internal nodes which lead for successful search  

16 
 

15 

14 13 12 11 10 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 7  

  

Then we have, 

 

CN  1  
internal pathlengthof tree 

N 
 

C'N  
External path length of tree 

N  1 
 

 
CN   

1  
     C'N  1 

 N 
 

External path length is always 2N more than the internal path length. 

 

Merge Sort 

 

Merge sort algorithm is a classic example of divide and conquer. To sort an array, 

recursively, sort its left and right halves separately and then merge them. The time 

complexity of merge mort in the best case, worst case and average case is O(n log n) 

and the number of comparisons used is nearly optimal. 

 

This strategy is so simple, and so efficient but the problem here is that there seems 

to be no easy way to merge two adjacent sorted arrays together in place (The result 

must be build up in a separate array). 

 

The fundamental operation in this algorithm is merging two sorted lists. Because the 

lists are sorted, this can be done in one pass through the input, if the output is put in 

a third list. 

 

The basic merging algorithm takes two input arrays ‘a’ and ’b’, an output array ‘c’, 

and three counters, a ptr, b ptr and c ptr, which are initially set to the beginning of 

their respective arrays. The smaller of a[a ptr] and b[b ptr] is copied to the next 

entry in ‘c’, and the appropriate counters are advanced. When either input list is 

exhausted, the remainder of the other list is copied to ‘c’. 

 

To illustrate how merge process works. For example, let us consider the array ‘a’ 

containing 1, 13, 24, 26 and ‘b’ containing 2, 15, 27, 38. First a comparison is done 

between 1 and 2. 1 is copied to ‘c’. Increment a ptr and c ptr. 

 
 

 

and then 2 and 13 are compared. 2 is added to ‘c’. Increment b ptr and c ptr. 
 

 

 
 
 

 

    

 13 24 26 

h 

ptr 

   

 

    

 15 27 28 

j 

ptr 

   

 

        

        

i 

ptr 

       

 

    

 13 24 26 

 h 
ptr 

  

 

    

 15 27 28 

j 
ptr 

   

 

        

        

 i 
ptr 

      

 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 8  

then 13 and 15 are compared. 13 is added to ‘c’. Increment a ptr and c ptr. 
 

 

24 and 15 are compared. 15 is added to ‘c’. Increment b ptr and c ptr. 
 

 

24 and 27 are compared. 24 is added to ‘c’. Increment a ptr and c ptr. 
 

 

26 and 27 are compared. 26 is added to ‘c’. Increment a ptr and c ptr. 
 

 

As one of the lists is exhausted. The remainder of the b array is then copied to ‘c’. 

 

 

 
h 

ptr 

 
 

Algorithm 
 

Algorithm MERGESORT (low, high) 

// a (low : high) is a global array to be sorted. 
{ 

 
i 

ptr 

if (low < high) 

{ 

mid := (low  + high)/2 //finds where to split the set 

MERGESORT(low,  mid) //sort one subset 

MERGESORT(mid+1, high) //sort the other subset 
MERGE(low, mid, high) // combine the results 

} 

} 

 

 

 

 

    

 13 24 26 

 h 
ptr 

  

 

    

 15 27 28 

 j 
ptr 

  

 

        

  13      

  i 
ptr 

     

 

    

 13  26 

  h 

ptr 

 

 

    

 15 27 28 

 j 

ptr 

  

 

        

  13 15     

   i 

ptr 

    

 

    

 13 24  

  h 

ptr 

 

 

    

 15 27 28 

  j 

ptr 

 

 

        

  13 15     

    i 

ptr 

   

 

    

 13 24 26 

   h 

ptr 

 

    

 15 27 28 

  j 

ptr 

 

 

        

  13 15 24 26   

     i 

ptr 

  

 

    

 13 24 26 

    

 

    

 15 27 28 

  j 

ptr 

 

 

        

   15 24 26 27 28 

        

 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 9  

Algorithm MERGE (low, mid, high) 
// a (low : high) is a global array containing two sorted subsets 

// in a (low : mid) and in a (mid + 1 : high). 

// The objective is to merge these sorted sets into single sorted 

// set residing in a (low : high). An auxiliary array B is used. 
{ 

h :=low; i := low; j:= mid + 1; 

while ((h < mid) and (J < high)) do 
{ 

if (a[h] < a[j]) then 
{ 

 
} 

else 
{ 

 
} 

b[i] := a[h]; h := h + 1; 

 
 

b[i] :=a[j]; j := j + 1; 

i := i + 1; 
} 

if (h > mid) then 
for k := j to high do 

{ 

b[i] := a[k]; i := i + 1; 

} 
else 

for k := h to mid do 
{ 

b[i] := a[K]; i := i + l; 
} 

for k := low to high do 

a[k] := b[k]; 

} 

 

 

Example 

 
For example let us select the following 8 entries 7, 2, 9, 4, 3, 8, 6, 1 to illustrate 
merge sort algorithm: 

 

 

 

 

 

 
 

 

 

 

 

 

 

  

 

  

 

  

 

  

 

  



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 10  

Tree Calls of MERGESORT(1, 8) 

 
The following figure represents the sequence of recursive calls that are produced by 

MERGESORT when it is applied to 8 elements. The values in each node are the values 

of the parameters low and high. 

 
 

 

 

 

 
 

 
 

Tree Calls of MERGE() 

 
The tree representation of the calls to procedure MERGE by MERGESORT is as 
follows: 

 
 

 

 

 
 

 
Analysis of Merge Sort 

 

We will assume that ‘n’ is a power of 2, so that we always split into even halves, so 
we solve for the case n = 2k. 

 

For n = 1, the time to merge sort is constant, which we will be denote by 1. 

Otherwise, the time to merge sort ‘n’ numbers is equal to the time to do two 

recursive merge sorts of size n/2, plus the time to merge, which is linear. The 

equation says this exactly: 

 

T(1) = 1 

T(n) = 2 T(n/2) + n 

 

This is a standard recurrence relation, which can be solved several ways. We will 

solve by substituting recurrence relation continually on the right–hand side. 

 

We have, T(n) = 2T(n/2) + n 

 

 

 

1, 8 

2, 2 1, 1 

1, 2 

4, 4 3, 3 

3, 4 

6, 6 5, 5 

5, 6 

8, 8 7, 7 

7, 8 

1, 1, 2 3, 3, 4 5, 5, 6 7, 7, 8 

1, 4, 8 

5, 6, 8 1, 2, 4 

1, 4 5, 8 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 11  

T    
2 

Since we can substitute n/2 into this main equation 
 

2 T(n/2) 

 

We have, 

= 

= 

2 (2 (T(n/4)) + n/2) 

4 T(n/4) + n 

T(n/2) = 2 T(n/4) + n 

T(n) = 4 T(n/4) + 2n 

 

Again, by substituting n/4 into the main equation, we see that 
 

4T (n/4) = 
= 

4 (2T(n/8)) + n/4 
8 T(n/8) + n 

So we have,   

T(n/4) = 2 T(n/8) + n 

T(n) = 8 T(n/8) + 3n 

 

Continuing in this manner, we obtain: 

 

T(n) = 2k T(n/2k) + K. n 

 

As n = 2k, K = log2n, substituting this in the above equation 
 

T (n)  2log 2
n
  2

k  
 k 

 
  

log
2 
n . n 

 
  

= n T(1) + n log n 

= n log n + n 

Representing this in O notation: 

T(n) = O(n log n) 
 

We have assumed that n = 2k. The analysis can be refined to handle cases when ‘n’ 

is not a power of 2. The answer turns out to be almost identical. 

 

Although merge sort’s running time is O(n log n), it is hardly ever used for main 

memory sorts. The main problem is that merging two sorted lists requires linear 

extra memory and the additional work spent copying to the temporary array and 

back, throughout the algorithm, has the effect of slowing down the sort considerably. 

The Best and worst case time complexity of Merge sort is O(n log n). 

 

Strassen’s Matrix Multiplication: 

 

The matrix multiplication of algorithm due to Strassens is the most dramatic example 

of divide and conquer technique (1969). 

 

The usual way to multiply two n x n matrices A and B, yielding result matrix ‘C’ as 
follows : 

 
for i := 1 to n do 

for j :=1 to n do 
c[i, j] := 0; 
for K: = 1 to n do 

c[i, j] := c[i, j] + a[i, k] * b[k, j]; 

 
 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 12  

This algorithm requires n3 scalar multiplication’s (i.e. multiplication of single 
numbers) and n3 scalar additions. So we naturally cannot improve upon. 

 

We apply divide and conquer to this problem. For example let us considers three 

multiplication like this: 

A 11 A 12  B 11 B 12  C 11  
C 12  

   A A B B 
 

C C 

 

 21 22   21 22   21 22  
 

Then cij can be found by the usual matrix multiplication algorithm, 

C11 = A11 . B11 + A12 . B21 

C12 = A11 . B12 + A12 . B22 

C21 = A21 . B11 + A22 . B21 

C22 = A21 . B12 + A22 . B22 

 

This leads to a divide–and–conquer algorithm, which performs nxn matrix 

multiplication by partitioning the matrices into quarters and performing eight 

(n/2)x(n/2) matrix multiplications and four (n/2)x(n/2) matrix additions. 

 
T(1) = 1 

T(n) = 8 T(n/2) 

 

Which leads to T (n) = O (n3), where n is the power of 2. 

 
Strassens insight was to find an alternative method for calculating the Cij, requiring 
seven (n/2) x (n/2) matrix multiplications and eighteen (n/2) x (n/2) matrix  
additions and subtractions: 

 

P =  (A11 + A22) (B11 + B22) 

Q = (A21 + A22) B11 

R =  A11  (B12 – B22) 

S  =   A22 (B21 - B11) 

T = (A11 + A12) B22 

U  =  (A21 – A11) (B11 + B12) 

V = (A12 – A22) (B21 + B22) 

C11 = P + S – T + V 

C12 = R + T 

C21 = Q + S 

C22 = P + R - Q + U. 
 

This method is used recursively to perform the seven (n/2) x (n/2) matrix 

multiplications, then the recurrence equation for the number of scalar multiplications 

performed is: 

 

 
 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 13  

 

 

 

T(1) = 1 

T(n) = 7 T(n/2) 
 

Solving this for the case of n = 2k is easy: 
 

T(2k) = 

 

= 

7 T(2k–1) 

 

72 T(2k-2) 

 
= 

= 

- - - - - - 

- - - - - - 

 
= 7i T(2k–i) 

 

Put i = k  
= 7k T(1) 

 

= 7k 
 

That is,  T(n)  =        7 log
2
n
 

= n log 7 

 

= O(n log 7) = O(2n.81) 

 
So, concluding that Strassen’s algorithm is asymptotically more efficient than the 

standard algorithm. In practice, the overhead of managing the many small matrices 

does not pay off until ‘n’ revolves the hundreds. 

 

Quick Sort 
 

The main reason for the slowness of Algorithms like SIS is that all comparisons and 
exchanges between keys in a sequence w1, w2, . . . . , wn take place between 
adjacent pairs. In this way it takes a relatively long time for a key that is badly out of 
place to work its way into its proper position in the sorted sequence. 

 

Hoare his devised a very efficient way of implementing this idea in the early 1960’s 

that improves the O(n2) behavior of SIS algorithm with an expected performance that 

is O(n log n). 

 

In essence, the quick sort algorithm partitions the original array by rearranging it 

into two groups. The first group contains those elements less than some arbitrary 

chosen value taken from the set, and the second group contains those elements 

greater than or equal to the chosen value. 

 

The chosen value is known as the pivot element. Once the array has been rearranged 

in this way with respect to the pivot, the very same partitioning is recursively applied 

to each of the two subsets. When all the subsets have been partitioned and 

rearranged, the original array is sorted. 

 

The function partition() makes use of two pointers ‘i’ and ‘j’ which are moved toward 
each other in the following fashion: 

 

 Repeatedly increase the pointer ‘i’ until a[i] >= pivot. 
 

 Repeatedly decrease the pointer ‘j’ until a[j] <= pivot. 
 

 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 14  

 If j > i, interchange a[j] with a[i] 
 

 Repeat the steps 1, 2 and 3 till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’ 
pointer crosses ‘j’ pointer, the position for pivot is found and place pivot 
element in ‘j’ pointer position. 

 
The program uses a recursive function quicksort(). The algorithm of quick sort 
function sorts all elements in an array ‘a’ between positions ‘low’ and ‘high’. 

 
 It terminates when the condition low >= high is satisfied. This condition 

will be satisfied only when the array is completely sorted. 

 
 Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it 

calls the partition function to find the proper position j of the element 
x[low] i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], . . . . 
. . . x[j-1] and x[j+1], x[j+2], . . .x[high]. 

 

 It calls itself recursively to sort the left sub-array x[low], x[low+1], . . . . . 

. . x[j-1] between positions low and j-1 (where j is returned by the 

partition function). 
 

 It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . . . . . 

. . . x[high] between positions j+1 and high. 

 

Algorithm Algorithm 

QUICKSORT(low, high) 
/* sorts the elements a(low), . . . . . , a(high) which reside in the global array A(1 : 

n) into ascending order a (n + 1) is considered to be defined and must be greater 
than all elements in a(1 : n); A(n + 1) = +  */ 
{ 

if low < high then 
{ 

j := PARTITION(a, low, high+1); 

// J is the position of the partitioning element 

QUICKSORT(low, j – 1); 
QUICKSORT(j + 1 , high); 

} 
} 

 

Algorithm PARTITION(a, m, p) 

{ 

V   a(m); i   m; j  p; // A (m) is the partition element 

do 
{ 

loop  i  := i   + 1  until  a(i) > v // i moves left to right 

loop  j  := j  – 1  until  a(j)  < v // p moves right to left 

if (i < j) then INTERCHANGE(a, i, j) 
} while (i > j); 

a[m] :=a[j]; a[j] :=V; // the partition element belongs at position P 

return j; 
} 

 

 

 

 

 

 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 15  

Algorithm INTERCHANGE(a, i, j) 
{ 

P:=a[i]; 

a[i] := a[j]; 

a[j] := p; 
} 

 

 

Example 

 

Select first element as the pivot element. Move ‘i’ pointer from left to right in search 

of an element larger than pivot. Move the ‘j’ pointer from right to left in search of an 

element smaller than pivot. If such elements are found, the elements are swapped. 

This process continues till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’ pointer crosses ‘j’ 

pointer, the position for pivot is found and interchange pivot and element at ‘j’ 

position. 

 

Let us consider the following example with 13 elements to analyze quick sort: 
 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

Remarks 

38 08 16 06 79 57 24 56 02 58 04 70 45  

pivot    i      j   swap i & j 

    04      79    

     i   j     swap i & j 

     02   57      

      j i       

(24 08 16 06 04 02) 38 (56 57 58 79 70 45) 
swap pivot 

& j 

pivot 
    

j, i 
       swap pivot 

& j 

(02 08 16 06 04) 24         

pivot, 
j 

i 
           swap pivot 

& j 

02 (08 16 06 04)          

 pivot i  j         swap i & j 

  04  16          

   j i          

 
(06 04) 08 (16) 

        swap pivot 
& j 

 pivot, 
j i 

           

 
(04) 06 

          swap pivot 
& j 

 04 

pivot, 

j, i 

            

    16 

pivot, 
j, i 

         

(02 04 06 08 16 24) 38        

       (56 57 58 79 70 45)  

 
 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 16  

 

       pivot i    j swap i & j 

        45    57  

        j i     

       
(45) 56 (58 79 70 57) 

swap pivot 
& j 

       45 

pivot, 
j, i 

     
swap pivot 

& j 

         (58 
pivot 

79 
i 

70 
57) 
j 

swap i & j 

          57  79  

          j i   

         
(57) 58 (70 79) 

swap pivot 
& j 

         57 

pivot, 

j, i 

    

           (70 79)  

           pivot, 
j 

i 
swap pivot 

& j 
           70   

            79 

pivot, 

j, i 

 

       (45 56 57 58 70 79)  

02 04 06 08 16 24 38 45 56 57 58 70 79  

 

 

Analysis of Quick Sort: 

 

Like merge sort, quick sort is recursive, and hence its analysis requires solving a 

recurrence formula. We will do the analysis for a quick sort, assuming a random pivot 

(and no cut off for small files). 
 

We will take T (0) = T (1) = 1, as in merge sort. 

 

The running time of quick sort is equal to the running time of the two recursive calls 

plus the linear time spent in the partition (The pivot selection takes only constant 

time). This gives the basic quick sort relation: 

 

T (n) = T (i) + T (n – i – 1) +  C n - (1) 

 

Where, i = |S1| is the number of elements in S1. 

 

Worst Case Analysis 

 
The pivot is the smallest element, all the time. Then i=0 and if we ignore T(0)=1, 

which is insignificant, the recurrence is: 
 

T (n) = T (n – 1) +  C n n > 1 - (2) 

 

Using equation – (1) repeatedly, thus 

 

 

 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 17  

 

1 

T (n – 1) = T (n – 2) + C (n – 1) 

 

T (n – 2) = T (n – 3) + C (n – 2) 

 

- - - - - - - - 

 

T  (2) = T (1) + C (2) 

 

Adding up all these equations yields 
 

 
T (n)  T (1)  

n 

i 
i  2 

= O  (n2) - (3) 

 

Best Case Analysis 

 

In the best case, the pivot is in the middle. To simply the math, we assume that the 

two sub-files are each exactly half the size of the original and although this gives a 

slight over estimate, this is acceptable because we are only interested in a Big – oh 

answer. 

 

T (n)    =  2 T (n/2) + C n - (4) 

 

Divide both sides by n 
 

T(n) 
 

  

n 
 

T(n / 2) 
 C 

n / 2 

 

- (5) 

 

Substitute n/2 for ‘n’ in equation (5) 
 

T(n / 2) 
 

  

n / 2 
 

T(n / 4) 
 C 

n / 4 

 

- (6) 

 

Substitute n/4 for ‘n’ in equation (6) 
 

T(n / 4) 
 

  

n / 4 
 

T(n / 8) 
 C 

n / 8 

 

- (7) 

- - - - - - - - 

- - - - - - - - 

Continuing in this manner, we obtain: 
 

T(2) 

2 
 

T(1) 
 C

 
 

- (8) 

We add all the equations from 4 to 8 and note that there are log n of them: 
 

T(n) 
 

  

n 
 

T(1) 

1 

 

 C log n - (9) 

 

Which yields, T (n) = C n log n + n = O(n  log n) - (10) 

This is exactly the same analysis as merge sort, hence we get the same answer. 

69 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 18  

Average Case Analysis 

 
The number of comparisons for first call on partition: Assume left_to_right moves 

over k smaller element and thus k comparisons. So when right_to_left crosses 

left_to_right it has made n-k+1 comparisons. So, first call on partition makes n+1 

comparisons. The average case complexity of quicksort is 
 

T(n) = comparisons for first call on quicksort 
+ 

{Σ 1<=nleft,nright<=n [T(nleft) + T(nright)]}n = (n+1) + 2 [T(0) +T(1) + T(2) + 

----- + T(n-1)]/n 
 

nT(n) = n(n+1) + 2 [T(0) +T(1) + T(2) + ----- + T(n-2) + T(n-1)] 

 
(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) + ----- + T(n-2)] \ 

 
Subtracting both sides: 

 
nT(n) –(n-1)T(n-1) = [ n(n+1) – (n-1)n] + 2T(n-1) = 2n + 2T(n-1) 

nT(n) = 2n + (n-1)T(n-1) + 2T(n-1) = 2n + (n+1)T(n-1) 

T(n) = 2 + (n+1)T(n-1)/n 

The recurrence relation obtained is: 

T(n)/(n+1) = 2/(n+1) + T(n-1)/n 

 
Using the method of subsititution: 

 
T(n)/(n+1) = 2/(n+1) + T(n-1)/n 

T(n-1)/n = 2/n + T(n-2)/(n-1) 

T(n-2)/(n-1) = 2/(n-1) + T(n-3)/(n-2) 

T(n-3)/(n-2) = 2/(n-2) + T(n-4)/(n-3) 

.  . 

.  . 

T(3)/4 = 2/4 + T(2)/3 

T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 + T(0) 

Adding both sides: 

T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] 

= [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] + T(0) + 

[2/(n+1) + 2/n + 2/(n-1) + ---------- +2/4 + 2/3] 

Cancelling the common terms: 

T(n)/(n+1) = 2[1/2 +1/3 +1/4+--------------+1/n+1/(n+1)] 

T(n) = (n+1)2[ 2k n 1 
1/ k 

=2(n+1) [ ] 

=2(n+1)[log (n+1) – log 2] 
=2n log (n+1) + log (n+1)-2n log 2 –log 2 

T(n)= O(n log n) 

 
 

3.8. Straight insertion sort: 

 

Straight insertion sort is used to create a sorted list (initially list is empty) and at 

each iteration the top number on the sorted list is removed and put into its proper 

 

 
 



  Design and Analysis of Algorithms                                                    

GVP College of Engineering for Women Page 19  

place in the sorted list. This is done by moving along the sorted list, from the 
smallest to the largest number, until the correct place for the new number is located 

i.e. until all sorted numbers with smaller values comes before it and all those with 

larger values comes after it. For example, let us consider the following 8 elements for 

sorting: 

 
Index 1 2 3 4 5 6 7 8 

Elements 27 412 71 81 59 14 273 87 

 

Solution: 

 
Iteration 0: 

 
 

unsorted 

 
 

412 

 
 

71 

 
 

81 

 
 

59 

 
 

14 

 
 

273 

 
 

87 

 

 Sorted 27        

Iteration 1: unsorted 412 71 81 59 14 273 87 
 

 Sorted 27 412       

Iteration 2: unsorted 71 81 59 14 273 87 
  

 Sorted 27 71 412      

Iteration 3: unsorted 81 39 14 273 87 
   

 Sorted 27 71 81 412     

Iteration 4: unsorted 59 14 273 87 
    

 Sorted 274 59 71 81 412    

Iteration 5: unsorted 14 273 87 
     

 Sorted 14 27 59 71 81 412   

Iteration 6: unsorted 273 87 
      

 Sorted 14 27 59 71 81 273 412  

Iteration 7: unsorted 87 
       

 Sorted 14 27 59 71 81 87 273 412 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 


