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     UNIT – I 

 

ALGORITHM 

 

Informal Definition: 

  An Algorithm is any well-defined computational procedure that takes 

some value or set of values as Input and produces a set of values or some value as 

output. Thus algorithm is a sequence of computational steps that transforms the i/p 

into the o/p. 

 

Formal Definition: 

  An Algorithm is a finite set of instructions that, if followed, 

accomplishes a particular task.  

All algorithms should satisfy the following criteria. 

 

1. INPUT    Zero or more quantities are externally supplied. 

2. OUTPUT  At least one quantity is produced. 

3. DEFINITENESS  Each instruction is clear and unambiguous. 

4. FINITENESS  If we trace out the instructions of an algorithm, then for all 

cases, the algorithm terminates after a finite number of steps. 

5. EFFECTIVENESS  Every instruction must very basic so that it can be 

carried out, in principle, by a person using only pencil & paper. 

 

Issues or study of Algorithm: 

 

 How to device or design an algorithm  creating and algorithm. 

 How to express an algorithm  definiteness. 

 How to analysis an algorithm  time and space complexity. 

 How to validate an algorithm  fitness. 

 Testing the algorithm  checking for error. 

 

 The study of Algorithms includes many important and active areas of research.  

There are four distinct areas of study one can identify 

1. How to device algorithms- 

     Creating an algorithm is an art which many never fully automated. A major goal 

is to study various design techniques that have proven to   be useful. By mastering 
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these design strategies, it will become easier for you to device new and useful 

algorithms. some of techniques may already be familiar, and some have been found 

to be useful. Dynamic programming is one technique. Some of the techniques are 

especially useful in fields other than computer science such as operations research 

and electrical engineering. 

2. How to validate algorithms:   

    Once an algorithm is devised, it is necessary to show that it computes the correct 

answer for all possible legal inputs. We refer to this process as algorithm 

validation. The algorithm need not as yet be expressed as a program. The purpose 

of validation is to assure us that this algorithm will work correctly independently. 

Once the validity of the method has been shown, a program can be written and a 

second phase begins. This phase is referred to as program proving or sometimes as 

program verification. 

 A proof of correctness requires that the solution be stated in two forms. One form 

is usually as a program which is annotated by a set of assertions about the input 

and output variables of the program. These assertions are often expressed in the 

predicate calculus. The second form is called a specification, and this may also be 

expressed in the predicate calculus.  A complete proof of program correctness 

requires that each statement of a programming language be precisely defined and 

all basic operations be proved correct. 

3. How to analyze algorithms: 

            As an algorithm is executed, it uses the computer's central processing unit 

(CPU) to perform operations and its memory to hold the program and data. 

Analysis of algorithms or performance analysis refers to the task of determining 

how much computing time and storage algorithms replace.we analyze the 

algorithm based on time and space complexity.The amount of time neede to run the 
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algorithm is called time complexity.The amount of memory neede to run the 

algorithm is called space complexity 

4. How to test a program: 

Testing a program consists of two phases 

1. Debugging 

2. Profiling 

Debugging: It is the process of executing programs on sample data sets to 

determine whether faulty results occur and, if so to correct them. However, as E. 

Dijkstra has pointed out, “debugging can only point to the presence of errors, but 

not to the absence". 

Profiling: Profiling or performance measurement is the process of executing a 

correct program on data sets and measuring the time and space it takes to compute 

the results.  

 

Algorithm Specification: 

 

 Algorithm can be described in three ways. 

 

1. Natural language like English: 

              When this way is choused care should be taken, we should ensure that 

each & every statement is definite. 

 

2. Graphic representation called flowchart: 

 

This method will work well when the algorithm is small& simple. 

 

3. Pseudo-code Method: 

 

                   This method describe algorithms as program, which resembles 

language like Pascal & algol. 
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Pseudo-Code Conventions for expressing algorithms:  

 

1. Comments begin with // and continue until the end of line. 

 

2. Blocks are indicated with matching braces {and}. 

 

3. An identifier begins with a letter. The data types of variables are not 

explicitly declared. 

 

4. Compound data types can be formed with records. Here is an example, 

Node. Record 

{ 

   data type – 1   data-1; 

 . 

 . 

 . 

    data type – n  data – n; 

    node * link; 

  } 

 

  Here link is a pointer to the record type node. Individual data items of 

a record can be accessed with  and period. 

 

5. Assignment of values to variables is done using the assignment statement. 

<Variable>:= <expression>; 

 

6. There are two Boolean values TRUE and FALSE. 

 

 Logical Operators       AND, OR, NOT 

Relational Operators   <, <=,>,>=, =, != 

 

7. The following looping statements are employed. 

 

For, while and repeat-until 

While Loop: 

  While < condition > do 

  { 

   <statement-1> 

    . 

    . 
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    . 

 

   <statement-n> 

   } 

 

For Loop: 

 For variable: = value-1 to value-2 step step do 

 

{ 

 <statement-1> 

  . 

  . 

  . 

<statement-n> 

} 

repeat-until: 

 

  repeat 

   <statement-1> 

    . 

    . 

    . 

 <statement-n> 

  until<condition> 

 

8. A conditional statement has the following forms. 

 

 If <condition> then <statement> 

 If <condition> then <statement-1>  

     Else <statement-1> 

 

Case statement: 

 

Case 

{ 

 : <condition-1> : <statement-1> 

    . 

    . 

    . 

 : <condition-n> : <statement-n> 
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 : else : <statement-n+1> 

} 

 

9. Input and output are done using the instructions read & write. 

 

10. There is only one type of procedure: 

Algorithm, the heading takes the form, 

 

 Algorithm Name (Parameter lists) 

 

Examples: 

 

 algorithm for find max of two numbers 

 

 algorithm Max(A,n) 

// A is an array of size n 

{ 

Result := A[1]; 

for I:= 2 to n do 

   if A[I] > Result then 

         Result :=A[I]; 

  return Result; 

} 

. 

  Algorithm for Selection Sort: 

 

 Algorithm selection sort (a,n) 

                 // Sort the array a[1:n] into non-decreasing order. 

 { 

            for i:=1 to n do 

  { 

   j:=i; 

   for k:=i+1 to n do 

    if (a[k]<a[j]) then j:=k; 

    t:=a[i]; 

    a[i]:=a[j]; 

    a[j]:=t; 

  } 

}   
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Recursive Algorithms: 

 

 A Recursive function is a function that is defined in terms of itself. 

 Similarly, an algorithm is said to be recursive if the same algorithm is 

invoked in the body. 

 An algorithm that calls itself is Direct Recursive. 

 Algorithm „A‟ is said to be Indirect Recursive if it calls another 

algorithm which in turns calls „A‟. 

 The Recursive mechanism, are externally powerful, but even more 

importantly, many times they can express an otherwise complex 

process very clearly. Or these reasons we introduce recursion here. 

 The following 2 examples show how to develop a recursive 

algorithms. 

 

 In the first, we consider the Towers of Hanoi problem, and in 

the second, we generate all possible permutations of a list of 

characters. 

 

1. Towers of Hanoi: 

 

 

 

 

 

 . 

 . 

 . 

 

 

 

 Tower A                                Tower B        Tower C 

 

                    

                    Towers of Hanoi is a problem in which there will be some disks  

which of decreasing sizes and were stacked on the tower in decreasing order of 

size bottom to top. Besides this there are two other towers (B and C) in which one 

tower will be act as destination tower and other act as intermediate tower. In this 

problem we have to move the disks from source tower to the destination tower. The 

conditions included during this problem are: 
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            1) Only one disk should be moved at a time. 

           2)  No larger disks should be kept on the smaller disks. 

 

Consider an example to explain more about towers of Hanoi: 

     

          Consider there are three towers A, B, C and there will be three disks present 

in tower A. Consider C as destination tower and B as intermediate  tower. The 

steps involved during moving the disks from A to B are 

     

          Step 1: Move the smaller disk which is present at the top of the tower                                             

A to C. 

          Step 2: Then move the next smallest disk present at the top of the tower A to 

B. 

          Step 3: Now move the smallest disk present at tower C to tower B 

          Step 4: Now move the largest disk present at tower A to tower C 

          Step 5: Move the disk smallest disk present at the top of the tower B                                         

to tower A. 

           Step 6: Move the disk present at tower B to tower C. 

           Step 7: Move the smallest disk present at tower A to tower C      

In this way disks are moved from source tower to destination tower. 

 

ALGORITHM FOR TOWERS OF HANOI: 

         

Algorithm Towersofhanoi (n, X ,Y, Z) 

                 { 

                         if (n>=1) then 

                                { 

                                   Towersofhanoi(n-1, X, Z, Y); 

                                   Write(“move top disk from tower “,X, “to top of tower”,Y); 

                                Towersofhanoi (n-1, Z, Y, X); 

                              } 

            } 

 

TIME COMPLEXITY OF TOWERS OF HANOI: 

  

         The recursive relation is: 

               

 t(n)=1;                 if n=0                 

        =2t(n-1)+2   if n>=1               
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 Solve the above recurrence relation then the time complexity of towers of Hanoi is 

O(2^n) 
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Performance Analysis: 

 

1. Space Complexity: 

 The space complexity of an algorithm is the amount of memory it 

needs to run to compilation. 

 

2. Time Complexity: 

 The time complexity of an algorithm is the amount of computer 

time it needs to run to compilation. 

 

Space Complexity: 

 

 The Space needed by each of these algorithms is seen to be the sum of the 

following component. 

 

1. A fixed part that is independent of the characteristics (eg:number,size)of the 

inputs and outputs. 

       The part typically includes the instruction space (ie. Space for the code), 

space for simple variable and fixed-size component variables (also called 

aggregate) space for constants, and so on. 

 

1. A variable part that consists of the space needed by component variables 

whose size is dependent on the particular problem instance being solved, the 

space needed by referenced variables (to the extent that is depends on 

instance characteristics), and the recursion stack space. 

 

 The space requirement s(p) of any algorithm p may therefore be 

written as, 

 S(P) = c+ Sp(Instance characteristics) 

Where „c‟ is a constant. 

 

          Example 1: 

 Algorithm abc(a,b,c) 

 { 

 return a+b++*c+(a+b-c)/(a+b) +4.0; 

 } 

In this algorithm sp=0;let assume each variable occupies one word. 

Then the space occupied by above algorithm is >=3. 

      S(P)>=3 
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Example 2: 

 

 Algorithm sum(a,n) 

 { 

  s=0.0; 

  for I=1 to n do 

  s= s+a[I]; 

  return s; 

 } 

 

In the above algoritm n,s and occupies one word each and array „a‟  

occupies n number of words so S(P)>=n+3  

Example 3: 

 

ALGORITHM FOR SUM OF NUMBERS USING RECURSION: 

   

        Algorithm RSum (a, n) 

            { 

                  if(n<=0) then 

                        return 0.0; 

                  else 

                        return RSum(a,n-1)+a[n]; 

            } 

The space complexity for above algorithm is: 

       

              In the above recursion algorithm the space need for the values of n, return  

address and pointer to array. The above recursive algorithm depth is (n+1). To each 

recursive call we require space for values of n, return address and pointer to array. 

So the total space occupied by the above algorithm  is S(P) >= 3(n+1)  

 

 

Time Complexity: 

 

 The time T(p) taken by a program P is  the sum of the compile time 

and the run time(execution time) 

 

The compile time does not depend on the instance characteristics. Also 

we may assume that a compiled program will be run several times without 

recompilation .This rum time is denoted by tp(instance characteristics). 
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 The number of steps any problem statemn t is assigned depends on the 

kind of statement. 

 

 For example, comments   0 steps. 

 Assignment statements  1 steps. 

[Which does not involve any calls to other algorithms] 

 

Interactive statement such as for, while & repeat-until Control part of 

the statement. 

 

->We can determine the number of steps needed by a program to solve a 

particular problem instance in Two ways. 

 

1. We introduce a variable, count into the program statement to increment 

count   with initial value 0.Statement to increment count by the appropriate 

amount are introduced into the program. 

  This is done so that each time a statement in the original program 

is executes count is incremented by the step count of that statement.   

 

 

Example1: 

 

Algorithm: 

 

Algorithm sum(a,n) 

{ 

s= 0.0; 

count = count+1; 

for I=1 to n do 

{ 

 count =count+1; 

s=s+a[I]; 

count=count+1; 

} 

count=count+1; 

count=count+1; 

return s; 

} 
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 If the count is zero to start with, then it will be 2n+3 on termination. So 

each   invocation of sum execute a total of 2n+3 steps. 

Example 2: 

 

Algorithm RSum(a,n) 

{ 

    count:=count+1;// For the if conditional 

    if(n<=0)then 

{ 

    count:=count+1; //For the return 

    return 0.0; 

} 

else 

{ 

    count:=count+1; //For the addition,function invocation and return 

   return RSum(a,n-1)+a[n]; 

} 

} 
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Example3: 

 

ALGORITHM FOR MATRIX ADDITION 

 

Algorithm Add(a,b,c,m,n) 

{ 

 for i:=1 to m do 

{ 

   count:=count+1; //For 'for i' 

   for j:=1 to n do 

  { 

     count:=count+1; //For 'for j' 

     c[i,j]=a[i,j]+b[i,j]; 

     count:=count+1; //For the assignment 

} 

count:=count+1; //For loop initialization and last time of 'for j' 
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} 

count:=count+1; //For loop initialization and last time of 'for i' 

If the count is zero to start with, then it will be 2mn+2m+1  on termination. So 

each   invocation of sum execute a total of 2mn+2m+1 steps 

 

          2. The second method to determine the step count of an algorithm is to build 

a table in which we list the total number of steps contributes by each statement. 

  

          First determine the number of steps per execution (s/e) of the statement 

and the  

           total number of times (ie., frequency) each statement is executed. 

         By combining these two quantities, the total contribution of all statements, 

the step count for the entire algorithm is obtained. 

 

 

Example 1: 

 

Statement S/e Frequency Total 

1. Algorithm Sum(a,n) 

2.{ 

3.        S=0.0; 

4.        for I=1 to n do 

5.         s=s+a[I]; 

6.         return s; 

7.  } 

 

0 

0 

1 

1 

1 

1 

0 

- 

- 

1 

n+1 

n 

1 

- 

0 

0 

1 

n+1 

n 

1 

0 

Total   2n+3 

                                     

step table for algorithm sum 

Example 2: 

 

  frequency total steps 

Statements s/e n=0              n>0 n=0               n>0 

1  algorithm Rsum(a,n) 0 _                      _ 0                          
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0 

2   {    

3      if(n<=0) then 1 1                         

1 

1                           

1 

4          return 0.0; 1 1                         

0 

1                           

0 

5      else return    

6         Rsum(a,n-1)+a[n]; 1+x 0                          

1 

0                           

1+x 

7    } 0 _                          

_ 

0                           

0 

Total   2                           

2+x 
 

step table for algorithm recursive sum 
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Example 3: 
 

Statements s/e frequency total steps 

1   Algorithm 

Add(a,b,c,m,n) 

0 _ 0 

2   { 0 _ 0 

3       for i:=1 to m do 1 m+1 m+1 

4           for j:=1 to n do 1 m(n+1) mn+m 

5              

c[I,j]:=a[I,j]+b[I,j]; 

1 mn mn 

6    } 0 _ 0 

Total   2mn+2m+1 
 

step table for matrix addition 

Example 4: 

 Algorithm to find nth fibnocci number 

Algorithm Fibonacci(n) 

//Compute the nth Fibonacci number 

{ 

    if(n<=1) then 

      write (n); 

   else 

   { 

       fnm2:=0;  

       fnm1:=1; 

      for i:=2 to n do 

     { 

         fn:=fnm1+fnm2; 
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         fnm:=fnm1;  

        fnm1:=fn; 

     } 

     write(fn); 

    } 
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Asymptotic Notations: 

            

                            The best algorithm can be measured by the efficiency of that 

algorithm.The efficiency of an algorithm is measured by computing time 

complexity.The asymptotic notations are used to find the time complexity of an 

algorithm.             

Asymptotic notations gives fastest possible,slowest possible time and average time 

of the algorithm. 

 

The basic asymptotic notations are Big-oh(O),Omega(Ω) and theta(Θ). 

1:BIG-OH(O)  NOTATION: 

    (i)It is denoted by 'O'. 

    (ii)It is used to find the upper bound time of an algorithm , that means the 

maximum time taken by the algorithm. 

Definition : Let f(n),g(n) are two non-negative functions. If there exists two 

positive constants c ,n0 . such that  c>0 and for all n>=n0   if f(n)<=c*g(n) then  we 

say that f(n)=O(g(n)) 
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THE GRAPH FOR BIG-OH (O)  NOTATION: 

Figure 1 

example : consider f(n)=2n+3 and g(n)=n^2 

Sol :  f(n)<=c*g(n)  

let us assuming as c=1,   

       then f(n)<=g(n) 

    if  n=1, 

 2n+3<=n^2  = 2(1)+3<=1^2  =>5<=1(false) 

      If n=2, 

 2n+3<=n^2=2(2)+3<=2^2= 7<=4(false) 

   if   n=3, 

 2n+3<=n^2= 2(3)+3<=3^2=9<=9   (true) 

   if   n=4, 

 2n+3<=n^2=>2(4)+3<=4^2=11<=6  (true) 

     if n=5, 

 2n+3<=n^2=2(5)+3<=5^2=13<=25  (true) 

     If  n=6,2n+3<=n^2=2(6)+3<=6^2=15<=36   (true) 

.:n>=3, f(n)=O(n^2) i.e,  f(n)=O(g(n)) 
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2:OMEGA (Ω)  NOTATION: 

 

    (i)It is denoted by ' Ω'. 

    (ii)It is used to find the lower bound time of an algorithm, that means the 

minimum time taken by an algorithm. 

 

Definition : Let f(n),g(n) are two non-negative functions. If there exists two 

positive constants c,n0.such that c>0 and for all  n>=n0.if f(n)>=c*g(n) then we 

say that f(n)=Ω(g(n)) 

THE GRAPH FOR OMEGA NOTATION:  

     

 
 

 

Example : consider f(n)=2n+5, g(n)=2n 

Sol : Let us assume as c=1 

     

     If  n=1:2n+5>=2n => 2(1)+5>=2(1) => 7>=2  (true) 
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    if  n=2:2n+3>=2n=> 2(2)+5>=2(2)=> 9>=4    (true) 

     if  n=3:2n+3>=2n=> 2(3)+5>=2(3)=> 11>=6   (true) 

 for all .:n>=1,  f(n)=Ω(n)  i.e , f(n)=Ω(g(n))  

 

3:THETA (Θ)  NOTATION:  

     (i)It is denoted by the symbol called as (Θ). 

     (ii)It is used to find the time in-between lower bound time and upper bound 

time of an  algorithm. 

Definition  : Let f(n),g(n) are two non-negative functions. If there exists positive 

constants c1,c2,n0.such that c1>0,c2>0 and for all n>=n0.if  

c1*g(n)<=f(n)<=c2*g(n)  then we  say that f(n)=Θ(g(n)) 

 

 

 

Example : consider f(n)=2n+5, g(n)=n 

Sol :c1*g(n)<=f(n)<=c2*g(n) 

 let us assuming as c1=3 then c1*g(n)=3n 

    if  n=1, 

 3n<=2n+5=>3(1)<=2(1)+5=>3<=7  (true) 

     If  n=2, 

 3n<=2n+5=>3(2)<=2(2)+5=>6<=9  (true) 
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     If  n=3, 

 3n<=2n+5=>3(3)<=2(3)+5=>9<=11   (true) 

 

       c2=4  c2*g(n)=4n 

     if  n=1, 

 2n+5<=4n=>2(1)+5<=4(1)=>7<=4   

     If  n=2, 

 2n+5<=4n=>2(2)+5<=4(2)=>9<=8   

      If n=3, 

 2n+5<=4n=>2(3)+5<=4(3)=>11<=12   (true) 

    If  n=4, 

 2n+5<=4n=>2(4)+5<=4(4)=>13<=16   (true) 

for all .:n>=3  f(n)=Θ(n)    f(n)= Θ (g(n)) 

 

4:LITTLE-OH  (O)  NOTATION:  

Definition : Let f(n),g(n) are two non-negative functions 

  if  lim [f(n) / g(n)] = 0  then we say that f(n)=o(g(n)) 

       
n                          

 

  example : consider f(n)=2n+3, g(n)=n^2 

sol : let us  

 lim  f(n)/g(n) = 0 

           n->

  

 lim    (2n+3) / (n^2) 

             n->

  

 =lim     n(2+(3/n)) / (n^2) 

               n->

  

 =lim       (2+(3/n)) /n 

               n->

 

 =2/

 

 =0 

       .:f(n)=o(n^2). 

 

5:LITTLE  OMEGA NOTATION:  

Definition: Let f(n) and g(n) are two non-negative functions. 

 if lim   g(n)/f(n) = 0  then we say that f(n)=ω(g(n)) 

              n->

  

example : consider f(n)=n^2, g(n)=2n+5 

sol : let us  
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 lim  g(n)/f(n) = 0 

            (n->

)  

 =lim (2n+5) /(n^2) 

            (n->

)  

 =lim n(2+(5/n)) / (n^2) 

           (n->

)  

 =lim  (2+(5/n)) / n =2/

=0 

            (n->

)  

       .:f(n)= ω(n). 

 

Amortized analysis: 

 
Amortized  analysis  means  finding  average  running  time  per  operation  over a  

worst  case  sequence  of  operations. 

Suppose  a  sequence  I1,I2,D1,I3,I4,I5,I6,D2,I7  of  insert  and  delete  operations  

is  performed  on  a  set. 

Assume  that  the  actual  cost  of  each  of  the  seven  inserts  is  one  and  for  

delete  operations  D1  and  D2  have  an  actual  cost  of  8  and  10  so  the  total  

cost  of  sequence  of  operations  is  25. 

In  amortized  scheme  we  charge  some  of  the  actual  cost  of  an  operation  to  

other  operations. This  reduce  the  charge  cost  of  some  operations  and    

increases  the  cost  of  other  operations. The amortized  cost  of  an  operation  is  

the  total  cost  charge  to  it. 

The  only  requirement  is  that  the  some  of  the  amortized  complexities  of  all  

operations  in  any  sequence  of  operations  be  greater  than  or  equal  to  their  

some  of  actual  complexities  i.e., 

           (1) 

Where  amortized( i )  and  actual( i )  denote  the  amortized  and  actual  

complexities  of  the  i
th

  operations  in  a  sequence  on  n  operations. 

To  define  the  potential  function  p(i)  as: 
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p( i )=amortized( i )-actual( i )+p( i-1 )           (2) 

If  we  sum  equation (2)  for  1≤i≤n  we  get 

=  

 

 

P (n)-p (0) =  

From equation (1) we say that 

P (n)-p (0) ≥0              (3) 

Under  assumption  p(0)=0,p(i)  is  the  amount  by  which  the  first  „i‟  operations  

have  been  over  charged  (i.e., they  have  been  charged  more  than  the  actual  

cost). 

The  methods  to  find  amortized  cost  for  operations  are: 

1. Aggregate method. 

2. Accounting method. 

3. Potential method. 

1. Aggregate method: 

The  amortized  cost  of  each  operation  is  set equal  to  Upper  Bound  On Sum  

Of  Actual  Costs(n)/n. 

2. Accounting method: 
In  this  method  we  assign  amortized  cost  to  the  operations (possibly  by  

guessing  what  assignment  will  work),compute  the  p(i)  using  equation(2)  and  

show  that  p(n)-p(0)>=0. 

3.Potential method: 

         Here  we  start  with  potential  function  that  satisfies  equation(3)  and  

compute  amortized  complexities  using  equation(2). 
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Example: 

Let assume we  pay  $50  for  each  month  other  than  March, June, September, 

and December  $100  for  every  June, September. calculate  cost  by  using  

aggregate, accounting  and  potential  method . 

 

 

Aggregate Method: 

 

 

=200 ×└n/12┘ + 100(└n/3┘-└n/12┘) + 50(n-└n/3┘) 

=100 ×└n/12┘+50└n/3┘+50n 

≤ 100 × (n/12) + 50 × (n/3) + 50×n 

=50 n ((1/6) + (1/3) + (1)) 

=50 n ((1+2+6)/6) 

=50 n (9/6) 

=75n. 

In  the  above  problem  the  actual  cost  for  „n‟  months  does  not  exceed  200n  

from  the  aggregate  method  the  amortized  cost  for  „n‟  months  does not  

exceed  $75. The  amortized  cost  for  each  month  is  set  to  $75. 

Let  assume  p(0)=0  the  potential  for  each  and  every  month. 

 

Accounting method: 

From  the  above  table  we  see  that  using  any  cost  less  than  $75  will  result  

in  p(n)-p(0)≤0. 

The  amortized  cost  must  be  ≥ 75. 

If  the  amortized  cost ≤ 75  then  only  the  condition  p(n)-p(0)<=0. 

Potential method: 

         To  the  given  problem  we  start  with  the  potential  function  as: 

               P (n) =0          n mod 12=0 

               P (n) =25        n mod 12=1 or 3 

Month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Actual 

cost: 

50 50 100 50 50 100 50 50 100 50 50 200 50 50 100 50 

Amortize

d cost: 

75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 

P( ): 25 50 25 50 75 50 75 100 75 100 125 0 25 50 25 50 
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               P (n) =50         n mod 12=4, 6, 2 

               P (n) =75         n mod 12=5, 7, 9 

              P (n) =100       n mod 12=8, 10   

              P (n) =125       n mod 12=4 

From  the  above  potential  function  the  amortized  cost  for  operation  is  

evaluated  for  amortized( i )=p( i )-p( i-1 )+actual( i ). 

 

Probabilistic analysis: 

             

                 In probabilistic analysis we analyze the algorithm for finding efficiency 

of the algorithm.The efficiency of algorithm is also depend upon distribution of 

inputs.In this we analyze algorithm by the concept of probability. 

            For example the company wants to recruiting k persons from the n 

persons.To do this the company assigns ranking to all n persons depend upon their 

performance.The rankings of n persons from r1 to rn.To n persons we get n! 

permutations out of n! permutations the company selects any one combination that 

is from r1 to rk 


