
UNIT – III
Function Oriented Software Design & User Interface Design

Function Oriented Software Design
There are two fundamentally different approaches to software design:

 function-oriented approach
 object-oriented approach

 Function-oriented design techniques are very popular:
 currently in use in many software development organizations.

 Function-oriented design techniques:
 start with the functional requirements specified in the SRS document.

 During the design process:
 high-level functions are successively decomposed into more detailed functions.
 Technically known as top-down decomposition.
 The detailed functions are mapped to a module structure.

SA/SD (Structured Analysis/Structured Design)
 SA/SD methodology:

 has essential features of several important function-oriented design methodologies ---
 if you need to use any specific design methodology later on,
 you can do so easily with small additional effort.

 SA/SD technique can be used to perform high-level design.
 SA/SD methodology consists of two distinct activities:

 Structured Analysis (SA)
 Structured Design (SD)

 During structured analysis:
 functional decomposition takes place.

 During structured design:
 module structure is formalized.

Functional decomposition
• Each function is analyzed:

• hierarchically decomposed into more detailed functions.
• simultaneous decomposition of high-level data into more detailed data.

Structured analysis
• Transforms a textual problem description into a graphic model.

• done using data flow diagrams (DFDs).
• DFDs graphically represent the results of structured analysis.

Structured design
• All the functions represented in the DFD mapped to a module structure.
• The module structure is called as the software architecture.
• Software architecture:

• refined through detailed design.
• Detailed design can be directly implemented:

• using a conventional programming language.
Structured Analysis vs. Structured Design

• Purpose of structured analysis:
• capture the detailed structure of the system as the user views it.

• Purpose of structured design:
• arrive at a form that is suitable for implementation in some programming language.

• The results of structured analysis can be easily understood even by ordinary customers:
• does not require computer knowledge
• directly represents customer’s perception of the problem
• uses customer’s terminology for naming different functions and data.

• The results of structured analysis can be reviewed by customers:
• to check whether it captures all their requirements.

Structured Analysis
• Based on principles of:

• Top-down decomposition approach.
• Divide and conquer principle:

• each function is considered individually (i.e. isolated from other functions)
• decompose functions totally disregarding what happens in other functions.

• Graphical representation of results using
• data flow diagrams (or bubble charts).

Data flow diagrams
 DFD is an elegant modelling technique:

 useful not only to represent the results of structured analysis
 applicable to other areas also:

 e.g. for showing the flow of documents or items in an organization,
 DFD technique is very popular because

 it is simple to understand and use.
 DFD is a hierarchical graphical model:

 shows the different functions (or processes) of the system
 data interchange among the processes.

DFD Concepts
 It is useful to consider each function as a processing station:

 each function consumes some input data and
 produces some output data.

Data Flow Model of a Car Assembly Unit

• A DFD model:

• uses limited types of symbols.
• simple set of rules
• easy to understand:

• it is a hierarchical model.
Hierarchical model

• Human mind can easily understand any hierarchical model:

• in a hierarchical model:
• we start with a very simple and abstract model of a system,
• details are slowly introduced through the hierarchies.

Data Store Symbol

External Entity Symbol

Represented by a rectangle
External entities are real
physical entities:

input data to the system or
consume data produced by the system.
Sometimes external entities are called terminator, source, or sink.

Function Symbol

A function such as “search-book” is represented using a circle:
This symbol is called a process or bubble or transform.

Bubbles are annotated with corresponding function names.
Functions represent some activity:

function names should be verbs.

Data Flow Symbol
A directed arc or line.

represents data flow in the direction of the arrow.
Data flow symbols are annotated with names of data they carry.

Data Store Symbol
• Represents a logical file:

• A logical file can be:
• a data structure
• a physical file on disk.

• Each data store is connected to a process:
• by means of a data flow symbol.

Output Symbol

Output produced by the system

Synchronous operation
If two bubbles are directly connected by a data flow arrow: they are synchronous

Asynchronous operation
If two bubbles are connected via a data store: they are not synchronous.

How is Structured Analysis Performed?

• Initially represent the software at the most abstract level:
• called the context diagram.
• the entire system is represented as a single bubble,
• this bubble is labelled according to the main function of the system.

Context Diagram
 A context diagram shows:

 data input to the system,
 output data generated by the system,
 external entities.

 Context diagram captures:
 various entities external to the system and interacting with it.
 data flow occurring between the system and the external entities.

 The context diagram is also called as the level 0 DFD.
 establishes the context of the system, i.e. represents:

