
GVP COLLEGE OF ENGINEERING FOR WOMEN

Names, Bindings, and Scopes

• Introduction

• Names

• Variables

• The Concept of Binding

• Scope

• Scope and Lifetime

• Referencing Environments

• Named Constants

1-1

GVP COLLEGE OF ENGINEERING FOR WOMEN

Introduction

• Imperative languages are abstractions of
von Neumann architecture

– Memory

– Processor

• Variables characterized by attributes

– To design a type, must consider scope, lifetime,
type checking, initialization, and type
compatibility

1-2

GVP COLLEGE OF ENGINEERING FOR WOMEN

Names

• Design issues for names:

– Are names case sensitive?

– Are special words reserved words or keywords?

1-3

GVP COLLEGE OF ENGINEERING FOR WOMEN

Names (continued)

• Length

– If too short, they cannot be connotative

– Language examples:

• FORTRAN 95: maximum of 31

• C99: no limit but only the first 63 are significant;
also, external names are limited to a maximum of
31

• C#, Ada, and Java: no limit, and all are significant

• C++: no limit, but implementers often impose one

1-4

GVP COLLEGE OF ENGINEERING FOR WOMEN

Names (continued)

• Special characters

– PHP: all variable names must begin with dollar
signs

– Perl: all variable names begin with special
characters, which specify the variable’s type

– Ruby: variable names that begin with @ are
instance variables; those that begin with @@ are
class variables

1-5

Names (continued)

• Case sensitivity

– Disadvantage: readability (names that look alike
are different)

• Names in the C-based languages are case sensitive

• Names in others are not

• Worse in C++, Java, and C# because predefined
names are mixed case (e.g.
IndexOutOfBoundsException)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-6

GVP COLLEGE OF ENGINEERING FOR WOMEN

Names (continued)

• Special words
– An aid to readability; used to delimit or separate

statement clauses
• A keyword is a word that is special only in certain

contexts, e.g., in Fortran
– Real VarName (Real is a data type followed with a name,

therefore Real is a keyword)

– Real = 3.4 (Real is a variable)

– A reserved word is a special word that cannot
be used as a user-defined name

– Potential problem with reserved words: If there
are too many, many collisions occur (e.g.,
COBOL has 300 reserved words!)

1-7

GVP COLLEGE OF ENGINEERING FOR WOMEN

Variables

• A variable is an abstraction of a memory
cell

• Variables can be characterized as a
sextuple of attributes:

– Name

– Address

– Value

– Type

– Lifetime

– Scope

1-8

GVP COLLEGE OF ENGINEERING FOR WOMEN

Variables Attributes

• Name - not all variables have them

• Address - the memory address with which it is
associated
– A variable may have different addresses at different times

during execution

– A variable may have different addresses at different
places in a program

– If two variable names can be used to access the same
memory location, they are called aliases

– Aliases are created via pointers, reference variables, C and
C++ unions

– Aliases are harmful to readability (program
readers must remember all of them)

1-9

GVP COLLEGE OF ENGINEERING FOR WOMEN

Variables Attributes (continued)

• Type - determines the range of values of variables
and the set of operations that are defined for
values of that type; in the case of floating point,
type also determines the precision

• Value - the contents of the location with which the
variable is associated

- The l-value of a variable is its address

- The r-value of a variable is its value

• Abstract memory cell - the physical cell or
collection of cells associated with a variable

1-10

GVP COLLEGE OF ENGINEERING FOR WOMEN

The Concept of Binding

A binding is an association, such as
between an attribute and an entity, or
between an operation and a symbol

• Binding time is the time at which a binding
takes place.

1-11

GVP COLLEGE OF ENGINEERING FOR WOMEN

Possible Binding Times

• Language design time -- bind operator
symbols to operations

• Language implementation time-- bind
floating point type to a representation

• Compile time -- bind a variable to a type
in C or Java

• Load time -- bind a C or C++ static
variable to a memory cell)

• Runtime -- bind a nonstatic local variable
to a memory cell

1-12

GVP COLLEGE OF ENGINEERING FOR WOMEN

Static and Dynamic Binding

• A binding is static if it first occurs before
run time and remains unchanged
throughout program execution.

• A binding is dynamic if it first occurs during
execution or can change during execution
of the program

1-13

GVP COLLEGE OF ENGINEERING FOR WOMEN

Type Binding

• How is a type specified?

• When does the binding take place?

• If static, the type may be specified by either
an explicit or an implicit declaration

1-14

GVP COLLEGE OF ENGINEERING FOR WOMEN

Explicit/Implicit Declaration

• An explicit declaration is a program
statement used for declaring the types of
variables

• An implicit declaration is a default
mechanism for specifying types of variables
(the first appearance of the variable in the
program)

• FORTRAN, BASIC, and Perl provide implicit
declarations (Fortran has both explicit and
implicit)
– Advantage: writability

– Disadvantage: reliability (less trouble with Perl)

1-15

GVP COLLEGE OF ENGINEERING FOR WOMEN

Dynamic Type Binding

• Dynamic Type Binding (JavaScript and PHP)

• Specified through an assignment statement
e.g., JavaScript

list = [2, 4.33, 6, 8];

list = 17.3;

– Advantage: flexibility (generic program units)

– Disadvantages:

• High cost (dynamic type checking and
interpretation)

• Type error detection by the compiler is difficult

1-16

GVP COLLEGE OF ENGINEERING FOR WOMEN

Variable Attributes (continued)

• Type Inferencing (ML, Miranda, and Haskell)
– Rather than by assignment statement, types are

determined (by the compiler) from the context
of the reference

• Storage Bindings & Lifetime
– Allocation - getting a cell from some pool of

available cells

– Deallocation - putting a cell back into the pool

• The lifetime of a variable is the time during
which it is bound to a particular memory
cell

1-17

GVP COLLEGE OF ENGINEERING FOR WOMEN

Categories of Variables by Lifetimes

• Static--bound to memory cells before
execution begins and remains bound to the
same memory cell throughout execution,
e.g., C and C++ static variables

– Advantages: efficiency (direct addressing),
history-sensitive subprogram support

– Disadvantage: lack of flexibility (no recursion)

1-18

GVP COLLEGE OF ENGINEERING FOR WOMEN

Categories of Variables by Lifetimes

• Stack-dynamic--Storage bindings are created for
variables when their declaration statements are
elaborated.

(A declaration is elaborated when the executable
code associated with it is executed)

• If scalar, all attributes except address are statically
bound
– local variables in C subprograms and Java methods

• Advantage: allows recursion; conserves storage

• Disadvantages:

– Overhead of allocation and deallocation

– Subprograms cannot be history sensitive

– Inefficient references (indirect addressing)

1-19

GVP COLLEGE OF ENGINEERING FOR WOMEN

Categories of Variables by Lifetimes

• Explicit heap-dynamic -- Allocated and
deallocated by explicit directives, specified by the
programmer, which take effect during execution

• Referenced only through pointers or references,
e.g. dynamic objects in C++ (via new and delete),
all objects in Java

• Advantage: provides for dynamic storage
management

• Disadvantage: inefficient and unreliable

1-20

GVP COLLEGE OF ENGINEERING FOR WOMEN

Categories of Variables by Lifetimes

• Implicit heap-dynamic--Allocation and
deallocation caused by assignment
statements

– all variables in APL; all strings and arrays in Perl,
JavaScript, and PHP

• Advantage: flexibility (generic code)

• Disadvantages:

– Inefficient, because all attributes are dynamic

– Loss of error detection

1-21

GVP COLLEGE OF ENGINEERING FOR WOMEN

Variable Attributes: Scope

• The scope of a variable is the range of
statements over which it is visible

• The nonlocal variables of a program unit
are those that are visible but not declared
there

• The scope rules of a language determine
how references to names are associated
with variables

1-22

GVP COLLEGE OF ENGINEERING FOR WOMEN

Static Scope

• Based on program text

• To connect a name reference to a variable, you (or
the compiler) must find the declaration

• Search process: search declarations, first locally,
then in increasingly larger enclosing scopes, until
one is found for the given name

• Enclosing static scopes (to a specific scope) are
called its static ancestors; the nearest static
ancestor is called a static parent

• Some languages allow nested subprogram
definitions, which create nested static scopes (e.g.,
Ada, JavaScript, Fortran 2003, and PHP)

1-23

GVP COLLEGE OF ENGINEERING FOR WOMEN

Scope (continued)

• Variables can be hidden from a unit by
having a "closer" variable with the same
name

• Ada allows access to these "hidden"
variables

– E.g., unit.name

1-24

GVP COLLEGE OF ENGINEERING FOR WOMEN

Blocks

– A method of creating static scopes inside program
units--from ALGOL 60

– Example in C:
void sub() {

int count;

while (...) {

int count;

count++;

...

}

…

}

- Note: legal in C and C++, but not in Java

and C# - too error-prone

1-25

Declaration Order

• C99, C++, Java, and C# allow variable
declarations to appear anywhere a
statement can appear

– In C99, C++, and Java, the scope of all local
variables is from the declaration to the end of
the block

– In C#, the scope of any variable declared in a
block is the whole block, regardless of the
position of the declaration in the block

• However, a variable still must be declared before it
can be used

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-26

Declaration Order (continued)

• In C++, Java, and C#, variables can be
declared in for statements

– The scope of such variables is restricted to the
for construct

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-27

Global Scope

• C, C++, PHP, and Python support a
program structure that consists of a
sequence of function definitions in a file

– These languages allow variable declarations to
appear outside function definitions

• C and C++have both declarations (just
attributes) and definitions (attributes and
storage)

– A declaration outside a function definition
specifies that it is defined in another file

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-28

Global Scope (continued)

• PHP

– Programs are embedded in XHTML markup
documents, in any number of fragments, some
statements and some function definitions

– The scope of a variable (implicitly) declared in a
function is local to the function

– The scope of a variable implicitly declared
outside functions is from the declaration to the
end of the program, but skips over any
intervening functions

• Global variables can be accessed in a function
through the $GLOBALS array or by declaring it global

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-29

Global Scope (continued)

• Python

– A global variable can be referenced in functions,
but can be assigned in a function only if it has
been declared to be global in the function

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-30

GVP COLLEGE OF ENGINEERING FOR WOMEN

Evaluation of Static Scoping

• Works well in many situations

• Problems:

– In most cases, too much access is possible

– As a program evolves, the initial structure is
destroyed and local variables often become
global; subprograms also gravitate toward
become global, rather than nested

1-31

GVP COLLEGE OF ENGINEERING FOR WOMEN

Dynamic Scope

• Based on calling sequences of program
units, not their textual layout (temporal
versus spatial)

• References to variables are connected to
declarations by searching back through the
chain of subprogram calls that forced
execution to this point

1-32

GVP COLLEGE OF ENGINEERING FOR WOMEN

Scope Example

Big

- declaration of X

Sub1

- declaration of X -

...

call Sub2

...

Sub2

...

- reference to X -

...

...

call Sub1
…

Big calls Sub1
Sub1 calls Sub2
Sub2 uses X

1-33

GVP COLLEGE OF ENGINEERING FOR WOMEN

Scope Example

• Static scoping

– Reference to X is to Big's X

• Dynamic scoping

– Reference to X is to Sub1's X

• Evaluation of Dynamic Scoping:

– Advantage: convenience

– Disadvantages:

1. While a subprogram is executing, its variables are
visible to all subprograms it calls

2. Impossible to statically type check

3. Poor readability- it is not possible to statically

determine the type of a variable
1-34

GVP COLLEGE OF ENGINEERING FOR WOMEN

Scope and Lifetime

• Scope and lifetime are sometimes closely
related, but are different concepts

• Consider a static variable in a C or C++
function

1-35

GVP COLLEGE OF ENGINEERING FOR WOMEN

Referencing Environments

• The referencing environment of a statement is the
collection of all names that are visible in the
statement

• In a static-scoped language, it is the local variables
plus all of the visible variables in all of the
enclosing scopes

• A subprogram is active if its execution has begun
but has not yet terminated

• In a dynamic-scoped language, the referencing
environment is the local variables plus all visible
variables in all active subprograms

1-36

GVP COLLEGE OF ENGINEERING FOR WOMEN

Named Constants

• A named constant is a variable that is bound to a
value only when it is bound to storage

• Advantages: readability and modifiability
• Used to parameterize programs
• The binding of values to named constants can be

either static (called manifest constants) or dynamic
• Languages:

– FORTRAN 95: constant-valued expressions
– Ada, C++, and Java: expressions of any kind
– C# has two kinds, readonly and const

- the values of const named constants are bound at
compile time

- The values of readonly named constants are
dynamically bound

1-37

GVP COLLEGE OF ENGINEERING FOR WOMEN

Summary

• Case sensitivity and the relationship of names to
special words represent design issues of names

• Variables are characterized by the sextuples:
name, address, value, type, lifetime, scope

• Binding is the association of attributes with
program entities

• Scalar variables are categorized as: static, stack
dynamic, explicit heap dynamic, implicit heap
dynamic

• Strong typing means detecting all type errors

1-38

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-39

Data Types

• Introduction

• Primitive Data Types

• Character String Types

• User-Defined Ordinal Types

• Array Types

• Associative Arrays

• Record Types

• Union Types

• Pointer and Reference Types

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-40

Introduction

• A data type defines a collection of data
objects and a set of predefined operations
on those objects

• A descriptor is the collection of the
attributes of a variable

• An object represents an instance of a
user-defined (abstract data) type

• One design issue for all data types: What
operations are defined and how are they
specified?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-41

Primitive Data Types

• Almost all programming languages provide
a set of primitive data types

• Primitive data types: Those not defined in
terms of other data types

• Some primitive data types are merely
reflections of the hardware

• Others require only a little non-hardware
support for their implementation

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-42

Primitive Data Types: Integer

• Almost always an exact reflection of the
hardware so the mapping is trivial

• There may be as many as eight different
integer types in a language

• Java’s signed integer sizes: byte, short,
int, long

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-43

Primitive Data Types: Floating Point

• Model real numbers, but only as
approximations

• Languages for scientific use support at
least two floating-point types (e.g., float
and double; sometimes more

• Usually exactly like the hardware, but not
always

• IEEE Floating-Point

Standard 754

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-44

Primitive Data Types: Complex

• Some languages support a complex type,
e.g., C99, Fortran, and Python

• Each value consists of two floats, the real
part and the imaginary part

• Literal form (in Python):

(7 + 3j), where 7 is the real part and 3 is
the imaginary part

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-45

Primitive Data Types: Decimal

• For business applications (money)

– Essential to COBOL

– C# offers a decimal data type

• Store a fixed number of decimal digits, in
coded form (BCD)

• Advantage: accuracy

• Disadvantages: limited range, wastes
memory

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-46

Primitive Data Types: Boolean

• Simplest of all

• Range of values: two elements, one for
“true” and one for “false”

• Could be implemented as bits, but often as
bytes

– Advantage: readability

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-47

Primitive Data Types: Character

• Stored as numeric codings

• Most commonly used coding: ASCII

• An alternative, 16-bit coding: Unicode
(UCS-2)

– Includes characters from most natural
languages

– Originally used in Java

– C# and JavaScript also support Unicode

• 32-bit Unicode (UCS-4)

– Supported by Fortran, starting with 2003

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-48

Character String Types

• Values are sequences of characters

• Design issues:

– Is it a primitive type or just a special kind of
array?

– Should the length of strings be static or
dynamic?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-49

Character String Types Operations

• Typical operations:

– Assignment and copying

– Comparison (=, >, etc.)

– Catenation

– Substring reference

– Pattern matching

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-50

Character String Type in Certain
Languages

• C and C++
– Not primitive

– Use char arrays and a library of functions that provide
operations

• SNOBOL4 (a string manipulation language)
– Primitive

– Many operations, including elaborate pattern matching

• Fortran and Python
– Primitive type with assignment and several operations

• Java
– Primitive via the String class

• Perl, JavaScript, Ruby, and PHP

- Provide built-in pattern matching, using regular

expressions

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-51

Character String Length Options

• Static: COBOL, Java’s String class

• Limited Dynamic Length: C and C++

– In these languages, a special character is used
to indicate the end of a string’s characters,
rather than maintaining the length

• Dynamic (no maximum): SNOBOL4, Perl,
JavaScript

• Ada supports all three string length options

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-52

Character String Type Evaluation

• Aid to writability

• As a primitive type with static length, they
are inexpensive to provide--why not have
them?

• Dynamic length is nice, but is it worth the
expense?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-53

Character String Implementation

• Static length: compile-time descriptor

• Limited dynamic length: may need a run-
time descriptor for length (but not in C and
C++)

• Dynamic length: need run-time descriptor;
allocation/de-allocation is the biggest
implementation problem

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-54

Compile- and Run-Time Descriptors

Compile-time
descriptor for
static strings

Run-time
descriptor for
limited dynamic
strings

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-55

User-Defined Ordinal Types

• An ordinal type is one in which the range of
possible values can be easily associated
with the set of positive integers

• Examples of primitive ordinal types in Java

– integer

– char

– boolean

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-56

Enumeration Types

• All possible values, which are named
constants, are provided in the definition

• C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

• Design issues
– Is an enumeration constant allowed to appear in

more than one type definition, and if so, how is
the type of an occurrence of that constant
checked?

– Are enumeration values coerced to integer?

– Any other type coerced to an enumeration type?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-57

Evaluation of Enumerated Type

• Aid to readability, e.g., no need to code a
color as a number

• Aid to reliability, e.g., compiler can check:

– operations (don’t allow colors to be added)

– No enumeration variable can be assigned a
value outside its defined range

– Ada, C#, and Java 5.0 provide better support for
enumeration than C++ because enumeration
type variables in these languages are not
coerced into integer types

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-58

Subrange Types

• An ordered contiguous subsequence of an
ordinal type

– Example: 12..18 is a subrange of integer type

• Ada’s design
type Days is (mon, tue, wed, thu, fri, sat, sun);

subtype Weekdays is Days range mon..fri;

subtype Index is Integer range 1..100;

Day1: Days;

Day2: Weekday;

Day2 := Day1;

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-59

Subrange Evaluation

• Aid to readability

– Make it clear to the readers that variables of
subrange can store only certain range of values

• Reliability

– Assigning a value to a subrange variable that is
outside the specified range is detected as an
error

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-60

Implementation of User-Defined
Ordinal Types

• Enumeration types are implemented as
integers

• Subrange types are implemented like the
parent types with code inserted (by the
compiler) to restrict assignments to
subrange variables

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-61

Array Types

• An array is an aggregate of homogeneous
data elements in which an individual
element is identified by its position in the
aggregate, relative to the first element.

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-62

Array Design Issues

• What types are legal for subscripts?

• Are subscripting expressions in element
references range checked?

• When are subscript ranges bound?

• When does allocation take place?

• What is the maximum number of
subscripts?

• Can array objects be initialized?

• Are any kind of slices supported?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-63

Array Indexing

• Indexing (or subscripting) is a mapping
from indices to elements
array_name (index_value_list) an element

• Index Syntax

– FORTRAN, PL/I, Ada use parentheses

• Ada explicitly uses parentheses to show uniformity
between array references and function calls because
both are mappings

– Most other languages use brackets

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-64

Arrays Index (Subscript) Types

• FORTRAN, C: integer only

• Ada: integer or enumeration (includes Boolean and
char)

• Java: integer types only

• Index range checking

- C, C++, Perl, and Fortran do not specify

range checking

- Java, ML, C# specify range checking

- In Ada, the default is to require range

checking, but it can be turned off

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-65

Subscript Binding and Array Categories

• Static: subscript ranges are statically
bound and storage allocation is static
(before run-time)
– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic: subscript ranges are
statically bound, but the allocation is done
at declaration time

– Advantage: space efficiency

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-66

Subscript Binding and Array Categories
(continued)

• Stack-dynamic: subscript ranges are
dynamically bound and the storage
allocation is dynamic (done at run-time)

– Advantage: flexibility (the size of an array need
not be known until the array is to be used)

• Fixed heap-dynamic: similar to fixed stack-
dynamic: storage binding is dynamic but
fixed after allocation (i.e., binding is done
when requested and storage is allocated
from heap, not stack)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-67

Subscript Binding and Array Categories
(continued)

• Heap-dynamic: binding of subscript ranges
and storage allocation is dynamic and can
change any number of times

– Advantage: flexibility (arrays can grow or shrink
during program execution)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-68

Subscript Binding and Array Categories
(continued)

• C and C++ arrays that include static
modifier are static

• C and C++ arrays without static modifier
are fixed stack-dynamic

• C and C++ provide fixed heap-dynamic
arrays

• C# includes a second array class ArrayList
that provides fixed heap-dynamic

• Perl, JavaScript, Python, and Ruby support
heap-dynamic arrays

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-69

Array Initialization

• Some language allow initialization at the
time of storage allocation

– C, C++, Java, C# example

int list [] = {4, 5, 7, 83}

– Character strings in C and C++

char name [] = “freddie”;

– Arrays of strings in C and C++

char *names [] = {“Bob”, “Jake”, “Joe”];

– Java initialization of String objects

String[] names = {“Bob”, “Jake”, “Joe”};

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-70

Heterogeneous Arrays

• A heterogeneous array is one in which the
elements need not be of the same type

• Supported by Perl, Python, JavaScript, and
Ruby

Array Initialization

• C-based languages
– int list [] = {1, 3, 5, 7}

– char *names [] = {“Mike”, “Fred”,“Mary Lou”};

• Ada

– List : array (1..5) of Integer :=

(1 => 17, 3 => 34, others => 0);

• Python

– List comprehensions

list = [x ** 2 for x in range(12) if x % 3 == 0]

puts [0, 9, 36, 81] in list

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-71

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-72

Arrays Operations

• APL provides the most powerful array processing
operations for vectors and matrixes as well as
unary operators (for example, to reverse column
elements)

• Ada allows array assignment but also catenation

• Python’s array assignments, but they are only
reference changes. Python also supports array
catenation and element membership operations

• Ruby also provides array catenation

• Fortran provides elemental operations because
they are between pairs of array elements
– For example, + operator between two arrays results in an

array of the sums of the element pairs of the two arrays

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-73

Rectangular and Jagged Arrays

• A rectangular array is a multi-dimensioned
array in which all of the rows have the same
number of elements and all columns have
the same number of elements

• A jagged matrix has rows with varying
number of elements
– Possible when multi-dimensioned arrays

actually appear as arrays of arrays

• C, C++, and Java support jagged arrays

• Fortran, Ada, and C# support rectangular
arrays (C# also supports jagged arrays)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-74

Slices

• A slice is some substructure of an array;
nothing more than a referencing
mechanism

• Slices are only useful in languages that
have array operations

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-75

Slice Examples

• Fortran 95

Integer, Dimension (10) :: Vector

Integer, Dimension (3, 3) :: Mat

Integer, Dimension (3, 3) :: Cube

Vector (3:6) is a four element array

• Ruby supports slices with the slice method

list.slice(2, 2) returns the third and fourth
elements of list

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-76

Slices Examples in Fortran 95

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-77

Implementation of Arrays

• Access function maps subscript expressions
to an address in the array

• Access function for single-dimensioned
arrays:

address(list[k]) = address (list[lower_bound])

+ ((k-lower_bound) * element_size)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-78

Accessing Multi-dimensioned Arrays

• Two common ways:

– Row major order (by rows) – used in most
languages

– column major order (by columns) – used in
Fortran

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-79

Locating an Element in a Multi-
dimensioned Array

•General format
Location (a[I,j]) = address of a [row_lb,col_lb] +
(((I - row_lb) * n) + (j - col_lb)) * element_size

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-80

Compile-Time Descriptors

Single-dimensioned array Multi-dimensional array

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-81

Associative Arrays

• An associative array is an unordered
collection of data elements that are
indexed by an equal number of values
called keys
– User-defined keys must be stored

• Design issues:

- What is the form of references to elements?

- Is the size static or dynamic?

• Built-in type in Perl, Python, Ruby, and Lua

– In Lua, they are supported by tables

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-82

Associative Arrays in Perl

• Names begin with %; literals are delimited
by parentheses

%hi_temps = ("Mon" => 77, "Tue" => 79,

“Wed” => 65, …);

• Subscripting is done using braces and keys

$hi_temps{"Wed"} = 83;

– Elements can be removed with delete

delete $hi_temps{"Tue"};

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-83

Record Types

• A record is a possibly heterogeneous
aggregate of data elements in which the
individual elements are identified by names

• Design issues:

– What is the syntactic form of references to the
field?

– Are elliptical references allowed

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-84

Definition of Records in COBOL

• COBOL uses level numbers to show nested
records; others use recursive definition

01 EMP-REC.

02 EMP-NAME.

05 FIRST PIC X(20).

05 MID PIC X(10).

05 LAST PIC X(20).

02 HOURLY-RATE PIC 99V99.

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-85

Definition of Records in Ada

• Record structures are indicated in an
orthogonal way

type Emp_Rec_Type is record

First: String (1..20);

Mid: String (1..10);

Last: String (1..20);

Hourly_Rate: Float;

end record;

Emp_Rec: Emp_Rec_Type;

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-86

References to Records

• Record field references
1. COBOL

field_name OF record_name_1 OF ... OF record_name_n

2. Others (dot notation)

record_name_1.record_name_2. ... record_name_n.field_name

• Fully qualified references must include all record names

• Elliptical references allow leaving out record names as long
as the reference is unambiguous, for example in COBOL

FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are
elliptical references to the employee’s first name

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-87

Operations on Records

• Assignment is very common if the types are
identical

• Ada allows record comparison

• Ada records can be initialized with
aggregate literals

• COBOL provides MOVE CORRESPONDING

– Copies a field of the source record to the
corresponding field in the target record

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-88

Evaluation and Comparison to Arrays

• Records are used when collection of data
values is heterogeneous

• Access to array elements is much slower
than access to record fields, because
subscripts are dynamic (field names are
static)

• Dynamic subscripts could be used with
record field access, but it would disallow
type checking and it would be much slower

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-89

Implementation of Record Type

Offset address relative to
the beginning of the records
is associated with each field

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-90

Unions Types

• A union is a type whose variables are
allowed to store different type values at
different times during execution

• Design issues

– Should type checking be required?

– Should unions be embedded in records?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-91

Discriminated vs. Free Unions

• Fortran, C, and C++ provide union
constructs in which there is no language
support for type checking; the union in
these languages is called free union

• Type checking of unions require that each
union include a type indicator called a
discriminant
– Supported by Ada

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-92

Ada Union Types

type Shape is (Circle, Triangle, Rectangle);

type Colors is (Red, Green, Blue);

type Figure (Form: Shape) is record

Filled: Boolean;

Color: Colors;

case Form is

when Circle => Diameter: Float;

when Triangle =>

Leftside, Rightside: Integer;

Angle: Float;

when Rectangle => Side1, Side2: Integer;

end case;

end record;

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-93

Ada Union Type Illustrated

A discriminated union of three shape variables

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-94

Evaluation of Unions

• Free unions are unsafe

– Do not allow type checking

• Java and C# do not support unions

– Reflective of growing concerns for safety in
programming language

• Ada’s descriminated unions are safe

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-95

Pointer and Reference Types

• A pointer type variable has a range of
values that consists of memory addresses
and a special value, nil

• Provide the power of indirect addressing

• Provide a way to manage dynamic memory

• A pointer can be used to access a location
in the area where storage is dynamically
created (usually called a heap)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-96

Design Issues of Pointers

• What are the scope of and lifetime of a
pointer variable?

• What is the lifetime of a heap-dynamic
variable?

• Are pointers restricted as to the type of
value to which they can point?

• Are pointers used for dynamic storage
management, indirect addressing, or both?

• Should the language support pointer types,
reference types, or both?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-97

Pointer Operations

• Two fundamental operations: assignment
and dereferencing

• Assignment is used to set a pointer
variable’s value to some useful address

• Dereferencing yields the value stored at the
location represented by the pointer’s value
– Dereferencing can be explicit or implicit

– C++ uses an explicit operation via *

j = *ptr

sets j to the value located at ptr

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-98

Pointer Assignment Illustrated

The assignment operation j = *ptr

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-99

Problems with Pointers

• Dangling pointers (dangerous)

– A pointer points to a heap-dynamic variable that has been
deallocated

• Lost heap-dynamic variable

– An allocated heap-dynamic variable that is no longer
accessible to the user program (often called garbage)

• Pointer p1 is set to point to a newly created heap-
dynamic variable

• Pointer p1 is later set to point to another newly created
heap-dynamic variable

• The process of losing heap-dynamic variables is called
memory leakage

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-100

Pointers in Ada

• Some dangling pointers are disallowed
because dynamic objects can be
automatically deallocated at the end of
pointer's type scope

• The lost heap-dynamic variable problem is
not eliminated by Ada (possible with
UNCHECKED_DEALLOCATION)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-101

Pointers in C and C++

• Extremely flexible but must be used with care

• Pointers can point at any variable regardless of
when or where it was allocated

• Used for dynamic storage management and
addressing

• Pointer arithmetic is possible

• Explicit dereferencing and address-of operators

• Domain type need not be fixed (void *)

void * can point to any type and can be type

checked (cannot be de-referenced)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-102

Pointer Arithmetic in C and C++

float stuff[100];

float *p;

p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]

*(p+i) is equivalent to stuff[i] and p[i]

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-103

Reference Types

• C++ includes a special kind of pointer type
called a reference type that is used
primarily for formal parameters
– Advantages of both pass-by-reference and

pass-by-value

• Java extends C++’s reference variables and
allows them to replace pointers entirely
– References are references to objects, rather than

being addresses

• C# includes both the references of Java and
the pointers of C++

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-104

Evaluation of Pointers

• Dangling pointers and dangling objects are
problems as is heap management

• Pointers are like goto's--they widen the
range of cells that can be accessed by a
variable

• Pointers or references are necessary for
dynamic data structures--so we can't
design a language without them

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-105

Representations of Pointers

• Large computers use single values

• Intel microprocessors use segment and
offset

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-106

Dangling Pointer Problem

• Tombstone: extra heap cell that is a pointer to the
heap-dynamic variable

– The actual pointer variable points only at tombstones

– When heap-dynamic variable de-allocated, tombstone
remains but set to nil

– Costly in time and space

. Locks-and-keys: Pointer values are represented as
(key, address) pairs

– Heap-dynamic variables are represented as variable plus
cell for integer lock value

– When heap-dynamic variable allocated, lock value is
created and placed in lock cell and key cell of pointer

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-107

Heap Management

• A very complex run-time process

• Single-size cells vs. variable-size cells

• Two approaches to reclaim garbage

– Reference counters (eager approach):
reclamation is gradual

– Mark-sweep (lazy approach): reclamation
occurs when the list of variable space becomes
empty

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-108

Reference Counter

• Reference counters: maintain a counter in
every cell that store the number of pointers
currently pointing at the cell

– Disadvantages: space required, execution time
required, complications for cells connected
circularly

– Advantage: it is intrinsically incremental, so
significant delays in the application execution
are avoided

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-109

Mark-Sweep

• The run-time system allocates storage cells as
requested and disconnects pointers from cells
as necessary; mark-sweep then begins

– Every heap cell has an extra bit used by collection
algorithm

– All cells initially set to garbage

– All pointers traced into heap, and reachable cells
marked as not garbage

– All garbage cells returned to list of available cells

– Disadvantages: in its original form, it was done too
infrequently. When done, it caused significant delays in
application execution. Contemporary mark-sweep
algorithms avoid this by doing it more often—called
incremental mark-sweep

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-110

Marking Algorithm

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-111

Variable-Size Cells

• All the difficulties of single-size cells plus
more

• Required by most programming languages

• If mark-sweep is used, additional problems
occur

– The initial setting of the indicators of all cells in
the heap is difficult

– The marking process in nontrivial

– Maintaining the list of available space is another
source of overhead

Type Checking

• Generalize the concept of operands and operators to include
subprograms and assignments

• Type checking is the activity of ensuring that the operands of
an operator are of compatible types

• A compatible type is one that is either legal for the operator,
or is allowed under language rules to be implicitly converted,
by compiler- generated code, to a legal type

– This automatic conversion is called a coercion.

• A type error is the application of an operator to an operand
of an inappropriate type

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-112

Type Checking (continued)

• If all type bindings are static, nearly all type
checking can be static

• If type bindings are dynamic, type checking
must be dynamic

• A programming language is strongly typed
if type errors are always detected

• Advantage of strong typing: allows the
detection of the misuses of variables that
result in type errors

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-113

Strong Typing

Language examples:

– FORTRAN 95 is not: parameters, EQUIVALENCE

– C and C++ are not: parameter type checking
can be avoided; unions are not type checked

– Ada is, almost (UNCHECKED CONVERSION is
loophole)

(Java and C# are similar to Ada)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-114

Strong Typing (continued)

• Coercion rules strongly affect strong
typing--they can weaken it considerably
(C++ versus Ada)

• Although Java has just half the assignment
coercions of C++, its strong typing is still
far less effective than that of Ada

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-115

Name Type Equivalence

• Name type equivalence means the two
variables have equivalent types if they are
in either the same declaration or in
declarations that use the same type name

• Easy to implement but highly restrictive:

– Subranges of integer types are not equivalent
with integer types

– Formal parameters must be the same type as
their corresponding actual parameters

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-116

Structure Type Equivalence

• Structure type equivalence means that two
variables have equivalent types if their
types have identical structures

• More flexible, but harder to implement

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-117

Type Equivalence (continued)

• Consider the problem of two structured types:

– Are two record types equivalent if they are
structurally the same but use different field
names?

– Are two array types equivalent if they are the
same except that the subscripts are different?

(e.g. [1..10] and [0..9])

– Are two enumeration types equivalent if their
components are spelled differently?

– With structural type equivalence, you cannot
differentiate between types of the same
structure (e.g. different units of speed, both
float)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-118

Theory and Data Types

• Type theory is a broad area of study in
mathematics, logic, computer science, and
philosophy

• Two branches of type theory in computer
science:

– Practical – data types in commercial languages

– Abstract – typed lambda calculus

• A type system is a set of types and the
rules that govern their use in programs

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-119

Theory and Data Types (continued)

• Formal model of a type system is a set of
types and a collection of functions that
define the type rules

– Either an attribute grammar or a type map could
be used for the functions

– Finite mappings – model arrays and functions

– Cartesian products – model tuples and records

– Set unions – model union types

– Subsets – model subtypes

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-120

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-121

Summary

• The data types of a language are a large part of
what determines that language’s style and
usefulness

• The primitive data types of most imperative
languages include numeric, character, and Boolean
types

• The user-defined enumeration and subrange types
are convenient and add to the readability and
reliability of programs

• Arrays and records are included in most languages

• Pointers are used for addressing flexibility and to
control dynamic storage management

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-122

Expressions and
Assignment Statements

• Introduction

• Arithmetic Expressions

• Overloaded Operators

• Type Conversions

• Relational and Boolean Expressions

• Short-Circuit Evaluation

• Assignment Statements

• Mixed-Mode Assignment

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-123

Introduction

• Expressions are the fundamental means of
specifying computations in a programming
language

• To understand expression evaluation, need
to be familiar with the orders of operator
and operand evaluation

• Essence of imperative languages is
dominant role of assignment statements

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-124

Arithmetic Expressions

• Arithmetic evaluation was one of the
motivations for the development of the first
programming languages

• Arithmetic expressions consist of
operators, operands, parentheses, and
function calls

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-125

Arithmetic Expressions: Design Issues

• Design issues for arithmetic expressions

– Operator precedence rules?

– Operator associativity rules?

– Order of operand evaluation?

– Operand evaluation side effects?

– Operator overloading?

– Type mixing in expressions?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-126

Arithmetic Expressions: Operators

• A unary operator has one operand

• A binary operator has two operands

• A ternary operator has three operands

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-127

Arithmetic Expressions: Operator
Precedence Rules

• The operator precedence rules for
expression evaluation define the order in
which the operators of different
precedence levels are evaluated

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-128

Arithmetic Expressions: Operator
Associativity Rule

• The operator associativity rules for expression evaluation
define the order in which adjacent operators with the same
precedence level are evaluated

• APL is different; all operators have equal precedence and all
operators associate right to left

• Precedence and associativity rules can be overriden with
parentheses

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-129

Ruby Expressions

• All arithmetic, relational, and assignment
operators, as well as array indexing, shifts,
and bit-wise logic operators, are
implemented as methods

- One result of this is that these operators can all

be overriden by application programs

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-130

Arithmetic Expressions: Conditional
Expressions

• Conditional Expressions

– C-based languages (e.g., C, C++)

– An example:

average = (count == 0)? 0 : sum / count

– Evaluates as if written like
if (count == 0)

average = 0

else

average = sum /count

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-131

Arithmetic Expressions: Operand
Evaluation Order

• Operand evaluation order
1. Variables: fetch the value from memory

2. Constants: sometimes a fetch from memory;
sometimes the constant is in the machine
language instruction

3. Parenthesized expressions: evaluate all
operands and operators first

4. The most interesting case is when an operand
is a function call

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-132

Arithmetic Expressions: Potentials for
Side Effects

• Functional side effects: when a function changes a
two-way parameter or a non-local variable

• Problem with functional side effects:

– When a function referenced in an expression alters
another operand of the expression; e.g., for a parameter
change:

a = 10;

/* assume that fun changes its parameter */

b = a + fun(&a);

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-133

Functional Side Effects

• Two possible solutions to the problem

1. Write the language definition to disallow functional side
effects

• No two-way parameters in functions

• No non-local references in functions

• Advantage: it works!

• Disadvantage: inflexibility of one-way parameters and
lack of non-local references

2. Write the language definition to demand that operand
evaluation order be fixed

• Disadvantage: limits some compiler optimizations

• Java requires that operands appear to be evaluated in
left-to-right order

• A program has the property of referential transparency if any two
expressions in the program that have the same value can be
substituted for one another anywhere in the program, without
affecting the action of the program.

• It is related to and affected by functional side effects

Ex: 1. result1 = (fun(a) + b) / (fun(a) - c);

temp = fun(a);

result2 = (temp + b) / (temp - c);

If the function fun has no side effects, result1 and result2 will be equal,
because the expressions assigned to them are equivalent

• Semantics of Referential Transparent programs is much easier to
understand than the semantics of programs that are not
referentially transparent.

• Being referentially transparent makes a function equivalent to a

mathematical function, in terms of ease of understanding.

Referential Transparency

GVP COLLEGE OF ENGINEERING FOR WOMEN
1-134

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-135

Overloaded Operators

• Use of an operator for more than one
purpose is called operator overloading

• Some are common (e.g., + for int and
float)

• Some are potential trouble (e.g., * in C and
C++)
– Loss of compiler error detection (omission of an

operand should be a detectable error)

– Some loss of readability

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-136

Overloaded Operators (continued)

• C++ and C# allow user-defined overloaded
operators

• Potential problems:

– Users can define nonsense operations

– Readability may suffer, even when the operators
make sense

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-137

Type Conversions

• A narrowing conversion is one that converts
an object to a type that cannot include all
of the values of the original type e.g.,
float to int

• A widening conversion is one in which an
object is converted to a type that can
include at least approximations to all of the
values of the original type
e.g., int to float

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-138

Type Conversions: Mixed Mode

• A mixed-mode expression is one that has
operands of different types

• A coercion is an implicit type conversion

• Disadvantage of coercions:

– They decrease in the type error detection ability of the
compiler

• In most languages, all numeric types are coerced
in expressions, using widening conversions

• In Ada, there are virtually no coercions in
expressions

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-139

Explicit Type Conversions

• Called casting in C-based languages

• Examples
– C: (int)angle

– Ada: Float (Sum)

Note that Ada’s syntax is similar to that of
function calls

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-140

Type Conversions: Errors in Expressions

• Causes

– Inherent limitations of arithmetic
e.g., division by zero

– Limitations of computer arithmetic
e.g. overflow

• Often ignored by the run-time system

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-141

Relational and Boolean Expressions

• Relational Expressions

– Use relational operators and operands of
various types

– Evaluate to some Boolean representation

– Operator symbols used vary somewhat among
languages (!=, /=, ~=, .NE., <>, #)

• JavaScript and PHP have two additional
relational operator, === and !==

- Similar to their cousins, == and !=, except that

they do not coerce their operands

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-142

Relational and Boolean Expressions

• Boolean Expressions

– Operands are Boolean and the result is Boolean

– Example operators

FORTRAN 77 FORTRAN 90 C Ada

.AND. and && and

.OR. or || or

.NOT. not ! not

xor

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-143

Relational and Boolean Expressions: No
Boolean Type in C

• C89 has no Boolean type--it uses int type
with 0 for false and nonzero for true

• One odd characteristic of C’s expressions:
a < b < c is a legal expression, but the
result is not what you might expect:

– Left operator is evaluated, producing 0 or 1

– The evaluation result is then compared with the
third operand (i.e., c)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-144

Short Circuit Evaluation

• An expression in which the result is
determined without evaluating all of the
operands and/or operators

• Example: (13*a) * (b/13–1)
If a is zero, there is no need to evaluate (b/13-1)

• Problem with non-short-circuit evaluation
index = 1;

while (index <= length) && (LIST[index] != value)

index++;

– When index=length, LIST [index] will cause an
indexing problem (assuming LIST has length -1

elements)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-145

Short Circuit Evaluation (continued)

• C, C++, and Java: use short-circuit evaluation for
the usual Boolean operators (&& and ||), but also
provide bitwise Boolean operators that are not
short circuit (& and |)

• Ada: programmer can specify either (short-circuit
is specified with and then and or else)

• Short-circuit evaluation exposes the potential
problem of side effects in expressions
e.g. (a > b) || (b++ / 3)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-146

Assignment Statements

• The general syntax
<target_var> <assign_operator> <expression>

• The assignment operator

= FORTRAN, BASIC, the C-based languages

:= ALGOLs, Pascal, Ada

• = can be bad when it is overloaded for the
relational operator for equality (that’s why
the C-based languages use == as the
relational operator)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-147

Assignment Statements: Conditional
Targets

• Conditional targets (Perl)
($flag ? $total : $subtotal) = 0

Which is equivalent to

if ($flag){

$total = 0

} else {

$subtotal = 0

}

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-148

Assignment Statements: Compound
Operators

• A shorthand method of specifying a
commonly needed form of assignment

• Introduced in ALGOL; adopted by C

• Example

a = a + b

is written as

a += b

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-149

Assignment Statements: Unary
Assignment Operators

• Unary assignment operators in C-based
languages combine increment and
decrement operations with assignment

• Examples

sum = ++count (count incremented, added to sum)

sum = count++ (count incremented, added to sum)

count++ (count incremented)

-count++ (count incremented then negated)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-150

Assignment as an Expression

• In C, C++, and Java, the assignment
statement produces a result and can be
used as operands

• An example:

while ((ch = getchar())!= EOF){…}

ch = getchar() is carried out; the result
(assigned to ch) is used as a conditional
value for the while statement

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-151

List Assignments

• Perl and Ruby support list assignments

e.g.,

($first, $second, $third) = (20, 30, 40);

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-152

Mixed-Mode Assignment

• Assignment statements can also be
mixed-mode

• In Fortran, C, and C++, any numeric type
value can be assigned to any numeric
type variable

• In Java, only widening assignment
coercions are done

• In Ada, there is no assignment coercion

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-153

Summary

• Expressions

• Operator precedence and associativity

• Operator overloading

• Mixed-type expressions

• Various forms of assignment

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-154

Statement-Level
Control Structures

• Introduction

• Selection Statements

• Iterative Statements

• Unconditional Branching

• Guarded Commands

• Conclusions

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-155

Levels of Control Flow

– Within expressions (Expression evaluation)

– Among program units (SubProgram calling
sequence)

– Among program statements (control
statements)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-156

Control Structure

• A control structure is a control statement
and the statements whose execution it
controls

• Design question

– Should a control structure have multiple entries?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-157

Selection Statements

• A selection statement provides the means
of choosing between two or more paths of
execution

• Two general categories:

– Two-way selectors

– Multiple-way selectors

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-158

Two-Way Selection Statements

• General form:

if control_expression

then clause

else clause

• Design Issues:
– What is the form and type of the control

expression?

– How are the then and else clauses specified?

– How should the meaning of nested selectors be
specified?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-159

The Control Expression

• If the then reserved word or some other
syntactic marker is not used to introduce
the then clause, the control expression is
placed in parentheses

• In C89, C99, Python, and C++, the control
expression can be arithmetic

• In languages such as Ada, Java, Ruby, and
C#, the control expression must be Boolean

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-160

Clause Form

• In many contemporary languages, the then and
else clauses can be single statements or compound
statements

• In C Based languages,Perl,Javascript,PHP all clauses
must be delimited by braces (they must be
compound)

• In Fortran 95, Ada, and Ruby, clauses are
statement sequences

• Python uses indentation to define clauses

if x > y :

x = y

print "case 1"

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-161

Nesting Selectors

• Java example

if (sum == 0)

if (count == 0)

result = 0;

else result = 1;

• Which if gets the else?

• Java's static semantics rule: else matches
with the nearest if

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-162

Nesting Selectors (continued)

• To force an alternative semantics,
compound statements may be used:

if (sum == 0) {

if (count == 0)

result = 0;

}

else result = 1;

• The above solution is used in C, C++, and C#

• Perl requires that all then and else clauses to be
compound

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-163

Nesting Selectors (continued)

• Statement sequences as clauses: Ruby

if sum == 0 then

if count == 0 then

result = 0

else

result = 1

end

end

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-164

Nesting Selectors (continued)

• Python

if sum == 0 :

if count == 0 :

result = 0

else :

result = 1

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-165

Multiple-Way Selection Statements

• Allow the selection of one of any number of
statements or statement groups

• Design Issues:

1. What is the form and type of the control expression?

2. How are the selectable segments specified?

3. Is execution flow through the structure restricted to
include just a single selectable segment?

4. How are case values specified?

5. What is done about unrepresented expression values?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-166

Multiple-Way Selection: Examples

• C, C++, and Java

switch (expression) {

case const_expr_1: stmt_1;

…

case const_expr_n: stmt_n;

[default: stmt_n+1]

}

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-167

Multiple-Way Selection: Examples

• Design choices for C’s switch statement

1. Control expression can be only an integer type

2. Selectable segments can be statement sequences,
blocks, or compound statements

3. Any number of segments can be executed in one
execution of the construct (there is no implicit
branch at the end of selectable segments)

4. default clause is for unrepresented values (if
there is no default, the whole statement does
nothing)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-168

Multiple-Way Selection: Examples

• C#

– Differs from C in that it has a static semantics
rule that disallows the implicit execution of
more than one segment

– Each selectable segment must end with an
unconditional branch (goto or break)

– Also, in C# the control expression and the case
constants can be strings

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-169

Multiple-Way Selection: Examples

• Ada

case expression is

when choice list => stmt_sequence;

…

when choice list => stmt_sequence;

[when others => stmt_sequence;]

end case;

• More reliable than C’s switch (once a
stmt_sequence execution is completed, control is
passed to the first statement after the case
statement

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-170

Multiple-Way Selection: Examples

• Ada design choices:

1. Expression can be any ordinal type

2. Segments can be single or compound

3. Only one segment can be executed per
execution of the construct

4. Unrepresented values are not allowed

• Constant List Forms:

1. A list of constants

2. Can include:

- Subranges

- Boolean OR operators (|)

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-171

Multiple-Way Selection: Examples

• Ruby has two forms of case statements

1. One form uses when conditions

leap = case

when year % 400 == 0 then true

when year % 100 == 0 then false

else year % 4 == 0

end

2. The other uses a case value and when values
case in_val

when -1 then neg_count++

when 0 then zero_count++

when 1 then pos_count++

else puts "Error – in_val is out of range"

end

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-172

Multiple-Way Selection Using if

• Multiple Selectors can appear as direct
extensions to two-way selectors, using
else-if clauses, for example in Python:

if count < 10 :

bag1 = True

elif count < 100 :

bag2 = True

elif count < 1000 :

bag3 = True

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-173

Multiple-Way Selection Using if

• The Python example can be written as a
Ruby case

case

when count < 10 then bag1 = true

when count < 100 then bag2 = true

when count < 1000 then bag3 = true

end

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-174

Iterative Statements

• The repeated execution of a statement or
compound statement is accomplished
either by iteration or recursion

• General design issues for iteration control
statements:

1. How is iteration controlled?

2. Where is the control mechanism in the loop?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-175

Counter-Controlled Loops

• A counting iterative statement has a loop
variable, and a means of specifying the
initial and terminal, and stepsize values

• Design Issues:

1. What are the type and scope of the loop
variable?

2. Should it be legal for the loop variable or loop
parameters to be changed in the loop body,
and if so, does the change affect loop control?

3. Should the loop parameters be evaluated only
once, or once for every iteration?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-176

Iterative Statements: Examples

• FORTRAN 95 syntax

DO label var = start, finish [, stepsize]

• Stepsize can be any value but zero

• Parameters can be expressions

• Design choices:

1. Loop variable must be INTEGER

2. The loop variable cannot be changed in the loop, but the
parameters can; because they are evaluated only once, it
does not affect loop control

3. Loop parameters are evaluated only once

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-177

Iterative Statements: Examples

• FORTRAN 95 : a second form:
[name:] Do variable = initial, terminal [,stepsize]

…

End Do [name]

- Cannot branch into either of Fortran’s Do
statements

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-178

Iterative Statements: Examples

• Ada
for var in [reverse] discrete_range loop
...

end loop

• Design choices:
- Type of the loop variable is that of the discrete
range (A discrete range is a sub-range of an
integer or enumeration type).
- Loop variable does not exist outside the loop
- The loop variable cannot be changed in the loop,
but the discrete range can; it does not affect loop
control
- The discrete range is evaluated just once

• Cannot branch into the loop body

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-179

Iterative Statements: Examples

• C-based languages
for ([expr_1] ; [expr_2] ; [expr_3]) statement

- The expressions can be whole statements, or even
statement sequences, with the statements separated by
commas
– The value of a multiple-statement expression is the value of the

last statement in the expression

– If the second expression is absent, it is an infinite loop

• Design choices:

- There is no explicit loop variable

- Everything can be changed in the loop

- The first expression is evaluated once, but the other two
are evaluated with each iteration

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-180

Iterative Statements: Examples

• C++ differs from C in two ways:

1. The control expression can also be Boolean

2. The initial expression can include variable
definitions (scope is from the definition to the
end of the loop body)

• Java and C#

– Differs from C++ in that the control
expression must be Boolean

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-181

Iterative Statements: Examples

• Python
for loop_variable in object:
- loop body

[else:
- else clause]

– The object is often a range, which is either a list of values
in brackets ([2, 4, 6]), or a call to the range function
(range(5), which returns 0, 1, 2, 3, 4

– The loop variable takes on the values specified in the
given range, one for each iteration

– The else clause, which is optional, is executed if the loop
terminates normally

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-182

Iterative Statements: Logically-
Controlled Loops

• Repetition control is based on a Boolean
expression

• Design issues:

– Pretest or posttest?

– Should the logically controlled loop be a
special case of the counting loop statement or
a separate statement?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-183

Iterative Statements: Logically-
Controlled Loops: Examples

• C and C++ have both pretest and posttest
forms, in which the control expression can
be arithmetic:

while (ctrl_expr) do

loop body loop body

while (ctrl_expr)

• Java is like C and C++, except the control
expression must be Boolean (and the body
can only be entered at the beginning -- Java
has no goto

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-184

Iterative Statements: Logically-
Controlled Loops: Examples

• Ada has a pretest version, but no posttest

• FORTRAN 95 has neither

• Perl and Ruby have two pretest logical
loops, while and until. Perl also has two
posttest loops

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-185

Iterative Statements: User-Located Loop
Control Mechanisms

• Sometimes it is convenient for the
programmers to decide a location for loop
control (other than top or bottom of the
loop)

• Simple design for single loops (e.g., break)

• Design issues for nested loops

1. Should the conditional be part of the exit?

2. Should control be transferable out of more
than one loop?

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-186

Iterative Statements: User-Located Loop
Control Mechanisms break and continue

• C , C++, Python, Ruby, and C# have
unconditional unlabeled exits (break)

• Java and Perl have unconditional labeled
exits (break in Java, last in Perl)

• C, C++, and Python have an unlabeled
control statement, continue, that skips the
remainder of the current iteration, but does
not exit the loop

• Java and Perl have labeled versions of
continue

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-187

Iterative Statements: Iteration Based on
Data Structures

• Number of elements of in a data structure
control loop iteration

• Control mechanism is a call to an iterator
function that returns the next element in
some chosen order, if there is one; else
loop is terminate

• C's for can be used to build a user-defined
iterator:

for (p=root; p==NULL; traverse(p)){

}

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-188

Iterative Statements: Iteration Based on
Data Structures (continued)

PHP

- current points at one element of the array

- next moves current to the next element

- reset moves current to the first element

• Java

- For any collection that implements the Iterator interface

- next moves the pointer into the collection

- hasNext is a predicate

- remove deletes an element

• Perl has a built-in iterator for arrays and hashes, foreach

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-189

Iterative Statements: Iteration Based on
Data Structures (continued)

• Java 5.0 (uses for, although it is called foreach)

- For arrays and any other class that implements

Iterable interface, e.g., ArrayList

for (String myElement : myList) { … }

• C#’s foreach statement iterates on the elements of arrays and

other collections:

Strings[] = strList = {"Bob", "Carol", "Ted"};

foreach (Strings name in strList)

Console.WriteLine ("Name: {0}", name);

- The notation {0} indicates the position in the string to be displayed

Iterative Statements: Iteration Based on
Data Structures (continued)

• Lua

– Lua has two forms of its iterative statement, one
like Fortran’s Do, and a more general form:

for variable_1 [, variable_2] in iterator(table) do

…

end

– The most commonly used iterators are pairs

and ipairs

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-190

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-191

Unconditional Branching

• Transfers execution control to a specified place in
the program

• Represented one of the most heated debates in
1960’s and 1970’s

• Major concern: Readability

• Some languages do not support goto statement
(e.g., Java)

• C# offers goto statement (can be used in switch
statements)

• Loop exit statements are restricted and somewhat
camouflaged goto’s

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-192

Guarded Commands

• Designed by Dijkstra

• Purpose: to support a new programming
methodology that supported verification
(correctness) during development

• Basis for two linguistic mechanisms for
concurrent programming (in CSP and Ada)

• Basic Idea: if the order of evaluation is not
important, the program should not specify
one

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-193

Selection Guarded Command

• Form
if <Boolean exp> -> <statement>

[] <Boolean exp> -> <statement>

...

[] <Boolean exp> -> <statement>

fi

• Semantics: when construct is reached,
– Evaluate all Boolean expressions

– If more than one are true, choose one non-
deterministically

– If none are true, it is a runtime error

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-194

Loop Guarded Command

• Form
do <Boolean> -> <statement>

[] <Boolean> -> <statement>

...

[] <Boolean> -> <statement>

od

• Semantics: for each iteration
– Evaluate all Boolean expressions

– If more than one are true, choose one non-
deterministically; then start loop again

– If none are true, exit loop

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-195

Guarded Commands: Rationale

• Connection between control statements
and program verification is intimate

• Verification is impossible with goto
statements

• Verification is possible with only selection
and logical pretest loops

• Verification is relatively simple with only
guarded commands

GVP COLLEGE OF ENGINEERING FOR WOMEN 1-196

Conclusion

• Variety of statement-level structures

• Choice of control statements beyond
selection and logical pretest loops is a
trade-off between language size and
writability

• Functional and logic programming
languages are quite different control
structures

