
 CO-UNIT VI- Basic Processing Unit
(HARDWIRED CONTROL AND MICROPROGRAMMED CONTROL)

1

Text/Reference Books

2. Computer Organization and Architecture: Designing for

Performance, William Stallings , Prentice-Hall India,Publ.

3.Computer Architecture A Quantitative Approach ,John L
Hennessy and David Patterson , Morgan Kaufman Publ.

4.Structured Computer Organization ,Andrew S. Tanenbaum ,
Prentice-Hall India Publ.

5. Computer Organization and Design, P. Paul Choudhury
,Prentice-Hall India,Publ.

Websites:

2

The following sources are used for preparing these slides

1. Computer Organization , Carl Hamacher, Zvonko Vranesic, Safwat Zaky

 McGraw Hill Publ.

CO-UNIT-V-Memory System

CONTENTS

 Fundamental Concepts on Control Unit

 Machine Cycles

 Function of the Control Unit

 Register Transfers

 Performing Arithmetic Operation

 Fetching a word from memory

 Storing a word in memory

 Execution of Complete Instruction

 Branch Instructions

 Multiple Bus Organization

 Hardwired Control

 Micro programmed Control

 Micro Instructions

 Microprogram Sequencing

 Wide Branch Addressing

 Microinstruction with next address field

 Prefetching Micro Instructions

 Emulation

 3 CO-Unit VI-Basic Processor Unit

 CO-UNIT VI

BASIC PROCESSING UNIT

 Dt.8.3.18

 Updated on 13.3.18

4

Machine Cycle

5 CO-Unit VI-Basic Processor Unit

http://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwihgayFg-bZAhXGto8KHef2BbMQjRwIBg&url=http%3A%2F%2Fwww.madaboutcomputer.com%2F2016%2F02%2F&psig=AOvVaw3XKhauEjvH0yl27PB_K74e&ust=1520917805386860

Model of Control Unit

6 CO-Unit VI-Basic Processor Unit

Functions of Control Unit using Control Signals

 Sequencing

 CU causes the CPU to step through a series of micro-operations
in proper sequence based on the program being executed.

E.g. In order to carry out a task such as ADD, the control unit must
generate a set of control signals in a predefined sequence
governed by the HW structure of the processing section.

 Execution

 CU causes each micro-operation to be performed

 Control Signals

 External: inputs indicating the state of the system

 Internal: logic required to perform the sequencing and execution
functions

7 CO-Unit VI-Basic Processor Unit

Fundamental Concepts contd..

 Inputs to control unit are:

 Master clock

 Status info from processing section

 Command signals from external agent

 Outputs produced by control unit

 Signals that drive the processing section and responses to an external envent
(operation complete or abort) due to exceptions (overflow and underflow)

 Control unit undertakes the following responsibilities

 Instruction interpretation:

 Read instr. , Recognize, Get operands and Route to appropriate functional
units, necessary control signals issued

 Instruction sequencing:

 Control unit determines the address of next instruction to be executed and
loads to PC

 Processor fetches one instruction at a time and perform the operation specified.

 Instructions are fetched from successive memory locations until a branch or a
jump instruction is encountered

8 CO-Unit VI-Basic Processor Unit

Connection between CPU and Memory

CO-Unit VI-Basic Processor Unit 9

10

Fetch/execute cycle

 Step I:
 Fetch the contents of the memory location pointed to by

Program Counter (PC).

 PC points to the memory location which has the instruction to
be executed.

 Load the contents of the memory location into Instruction
Register (IR).

 Step II:

 Increment the contents of the PC by 4 (assuming the memory is
byte addressable and the word length is 32 bits).

 Step III:

 Carry out the operation specified by the instructions in the IR.

 Steps I and II constitute the fetch phase, and are repeated as
many times as necessary to fetch the complete instruction.

 Step III constitutes the execution phase.

CO-Unit VI-Basic Processor Unit

11

Internal organization of a processor

 Recall that a processor has several registers/building
blocks:
 Memory address register (MAR)

 Memory data register (MDR)

 Program Counter (PC)

 Instruction Register (IR)

 General purpose registers R0 - R(n-1)

 Arithmetic and logic unit (ALU)

 Control unit.

 How are these units organized and how do they communicate
with each other?

CO-Unit VI-Basic Processor Unit

12

 Organization

PC

CPU bus

IR

 Decoder

control

R0

R1

R2

Rn-1

Register file

MAR

MDR

memory bus

Y

Z

 ALU

CO-Unit VI-Basic Processor Unit

13

 Register gating

Ri

CPU bus

Y

Z

ALU

x

x

x

x

MUX

x

Const 4 Ri_in

Ri_out

Y_in

Select

Z_in

Z_out

CO-Unit VI-Basic Processor Unit

Input & Output Gating for one Register Bit

 A 2-input multiplexer is used to select the data applied to the input of an

 edge-triggered D flip-flop.

 When Riin =1, mux selects data on bus. This data will be loaded
 into flip-flop at rising-edge of clock.
 When Riin =0, mux feeds back the value currently stored in flip-flop.

 Q output of flip-flop is connected to bus via a tri-state gate.

 When Riout = 0, gate's output is in the high-impedance state.

 (This corresponds to the open- circuit state of a switch).

 When Riout =1, the gate drives the bus to 0 or 1, depending on the

 value of Q.

CO-Unit VI-Basic Processor Unit 14

15

Registers and the bus

bus line 0

bus line 1

bus line m-1 (e.g., 31)
bit 0

bit m-1

register

clock

CO-Unit VI-Basic Processor Unit

Internal organization of a processor

lines
Data

Address
lines

bus
Memory

Carry-in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1 - ()

Instruction

decoder and

In
te

rn
a

l

p
ro

c
e

s
s
o

r
B

u
s

control logic

A B

MUX Select

Constant 4

MDR HAS

TWO INPUTS

AND TWO

OUTPUTS

CO-Unit VI-Basic Processor Unit

17

Single bus organization

 Single bus organization:
 ALU, control unit and all the registers are connected via a

single common bus (Called Internal Bus)

 Bus is internal to the processor and should not be confused
with the external bus that connects the processor to the
memory and I/O devices.

 Data lines of the external memory bus are connected to the
internal processor bus via MDR.
 Register MDR has two inputs and two outputs.

 Data may be loaded to (from) MDR from (to) internal processor
bus or external memory bus.

 Address lines of the external memory bus are connected to
the internal processor bus via MAR.
 MAR receives input from the internal processor bus.

 MAR provides output to external memory bus.

CO-Unit VI-Basic Processor Unit

18

Single bus organization (contd..)

 Instruction decoder and control logic block, or control unit
issues signals to control the operation of all units inside the
processor and for interacting with the memory bus.
 Control signals depend on the instruction loaded in the

Instruction Register (IR)

 Outputs from the control logic block are connected to:
 Control lines of the memory bus.

 ALU, to determine which operation is to be performed.

 Select input of the multiplexer MUX to select between
Register Y and constant 4.

 Control lines of the registers, to select the registers.

CO-Unit VI-Basic Processor Unit

19

Single bus organization (contd..)

 Registers Y, Z, and TEMP:
 Used by the processor for temporary storage during execution

of some instructions.

 Note that Registers R0 to R(n-1) are used to store data
generated by one instruction for later use by another
instruction.

 Data is stored in R0 through R(n-1) after the execution of an
instruction.

 Multiplexer MUX selects either the output of register Y or
a constant 4, depending upon the control input Select.

 Constant 4 is used to increment the value of the PC.
 B input of ALU is obtained directly from processor-bus.
 As instruction execution progresses, data are transferred from one
 register to another, often passing through ALU to perform
 arithmetic or logic operation.

CO-Unit VI-Basic Processor Unit

20

Registers and the bus (contd..)

 A bus may be viewed as a collection of parallel wires.

 Buses have no memory:
 They are just a collection of wires.

 When data is on the bus, all registers can “see” that data at
their inputs.

 A register may place its contents onto the bus.

CO-Unit VI-Basic Processor Unit

21

Registers and the bus (contd..)

 At any one time, only one register may output its contents to
the bus:
 Which register outputs its content to the bus is determined by

the control signal issued by the control logic.

 Control signal depends on the instruction loaded in the
instruction register.

 Registers can load data from the bus:
 Which registers load data from the bus is determined by the

control signal issued by the control logic.

 Registers are clocked (sequential) entities (unlike ALU which
is purely combinatorial).

CO-Unit VI-Basic Processor Unit

22

The Processing Unit

1. Basic Processing Cycle

2. Types of Operations

3. Control Mechanisms
1. Register Transfer

2. Fetch from Memory

3. Store to Memory

4. Arithmetic/Logic Ops.

5. Execution of Complete Instruction

6. Branching Ops.

CO-Unit VI-Basic Processor Unit

23

2. Types of Operations

Operation cycle includes:

 Transfer data from register to register or to ALU

 Fetch contents of memory location and put in one of

the CPU registers

 Store contents of CPU register in memory location

 Perform arithmetic or logic operation

CO-Unit VI-Basic Processor Unit

24

 2.1. Register Transfers

R0

R1

R2

R3

Y

Z register file

ALU

Address_in

 R_in

R_out CPU bus

Address_out

Copy contents of R1 to R3

1. Address_out=R1

2. R_out

3. Address_in=R3

4. R_in

1.R1_out

2.R3_in

When Riin =1, data on bus is loaded into Ri

 when Riout =1, content of Ri is placed on bus

CO-Unit VI-Basic Processor Unit

25

Registers and the bus (contd..)

D Q

Q
Clock

1

0

R i out

Bus

R i in

•Each bit in a register may be implemented by an edge-triggered D flip flop.
•Two input multiplexer is used to select the data applied to the input of an
 edge triggered flip-flop.
•Q output of the flip-flop is connected to the bus via a tri-state gate.

All operations and data transfers are controlled by the processor clock

CO-Unit VI-Basic Processor Unit

26

Registers and the bus (contd..)

D Q

Q
Clock

1

0

R i out

Bus

R i in

Riin = 1:
 Multiplexer selects the data on the bus.
 Data is loaded into the flip-flop at the rising edge of the clock.
Riin = 0:
 Multiplexer feeds back the value currently stored in the flip-flop.
 Q output represents the value currently stored in the flip-flop.

CO-Unit VI-Basic Processor Unit

27

Registers and the bus (contd..)

D Q

Q
Clock

1

0

R i out

Bus

R i in

Riout = 1:
 Tri-state gate loads the value of the flip-flop onto the bus.
 Data is loaded onto the bus at the rising edge of the clock.
Riout = 0:
 Gate’s output is in high-impedance (electrically disconnected) state.
 Corresponds to open-circuit state.

CO-Unit VI-Basic Processor Unit

28

Registers and the bus (contd..)

Operation of a tri-state gate

•A tri-state gate can enter one of three output states.
 - its output can be in a logic low state (L).
 - its output can be in a logic high state (H).
 - its output can be effectively an open-circuit (high impedance)
•When a tri-state gate is connected to a bus in high-impedance state, its outputs
are effectively disconnected from the bus.

D Q

Q
Clock

1

0

Bus

R i in

D Q

Q
Clock

1

0

Bus

R i in

Riout = 1, output is:

Logic low, if Q = 0

Logic high, if Q = 1

Riout = 0:

High impedance

Open circuit condition

CO-Unit VI-Basic Processor Unit

29

Registers and the bus (contd..)

Operation of a tri-state gate

•A tri-state gate can enter one of three output states.
 - its output can be in a logic low state (L).
 - its output can be in a logic high state (H).
 - its output can be effectively an open-circuit (high impedance)
•When a tri-state gate is connected to a bus in high-impedance state, its outputs
are effectively disconnected from the bus.

D Q

Q
Clock

1

0

Bus

R i in

D Q

Q
Clock

1

0

Bus

R i in

Riout = 1, output is:

Logic low, if Q = 0

Logic high, if Q = 1

Riout = 0:

High impedance

Open circuit condition

CO-Unit VI-Basic Processor Unit

30

Registers and the bus (contd..)

Operation of an edge-triggered flip-flop

 single processor clock period

 Low-to-High transition

•Data is loaded from the register to the bus (or to the register from the bus)
 at the rising edge of the clock.
•Data is loaded at the L-H transition of the clock.

CO-Unit VI-Basic Processor Unit

31

Simple register transfer example

Transfer the contents of register R3 to register R4

1. Control signals R3out and R4in become 1. They stay valid until the end of
 the clock cycle.
2.After a small delay, the contents of R3 are placed onto the bus. The contents
 of R3 stay onto the bus until the end of the clock cycle.
3. At the end of the clock cycle, the data onto the bus is loaded into R4. R3out
 and R4in become 0.

1 2 3

Clock period

CO-Unit VI-Basic Processor Unit

32

The Processing Unit

1. Basic Processing Cycle

2. Types of Operations

3. Control Mechanisms
1. Register Transfer

2. Fetch from Memory

3. Store to Memory

4. Arithmetic/Logic Ops.

5. Execution of Complete Instruction

6. Branching Ops.

CO-Unit VI-Basic Processor Unit

33

2.2. Fetch from Memory (1)

MDR

x

 Internal
processor bus

Memory bus
Data lines
(External Bus)

x

x

x

MDR_out

MDR_in

MDR_outE

MDR_inE

CO-Unit VI-Basic Processor Unit

34

MAR

MDR

 2.2. Fetch from memory (2)

 1. MAR  [Ri]

 2. Start read on memory bus
 3. Wait for MFC response
 4. Load MDR from memory bus
 5. Rj  [MDR]

MFC

Memory

CPU

Read

Address

Data

e.g., Move (Ri),Rj

Memory Function

Complete

Control Step 1

Control Step 2

Control Step 3

CO-Unit VI-Basic Processor Unit

 Memory

35

 Fetch from memory (3)

Control Step 1. Ri_out, MAR_in, Read

Control Step 2. MDR_inE, WMFC

Control Step 3. MDR_out, Rj_in

Signal Activation Sequence

Ri

x

x

Ri_in

Ri_out

x

x

x

x

MDR_out

MDR_in

MDR_outE

MDR_inE

MDR

Internal
processor bus

Memory bus
Data lines

CO-Unit VI-Basic Processor Unit

36

2.2. Fetch from Memory (4)

Value

New Address

 Timing of the Operation

CLK

MAR_in

MR

1 2 3

address

Read

MDR_inE

Data

MFC

MDR_out

1. Ri_out, MAR_in, Read

2. MDR_inE, WMFC

3. MDR_out, Rj_in

Mem.Fnc.Complete

Mem.Read Cmd.

Mem.Bus to MDR

MAR to Mem.Bus

CO-Unit VI-Basic Processor Unit

37

The Processing Unit

1. Basic Processing Cycle

2. Types of Operations

3. Control Mechanisms
1. Register Transfer

2. Fetch from Memory

3. Store to Memory

4. Arithmetic/Logic Ops.

5. Execution of Complete Instruction

6. Branching Ops.

CO-Unit VI-Basic Processor Unit

38

2.3. Store into Memory

 1. Ri_out, MAR_in

 2. Rj_out, MDR_in, Write

 3. MDR_outE, WMFC

 Memory CPU

Write

Address

Data

MFC

e.g., Move Rj,(Ri)

CO-Unit VI-Basic Processor Unit

39

The Processing Unit

1. Basic Processing Cycle

2. Types of Operations

3. Control Mechanisms
1. Register Transfer

2. Fetch from Memory

3. Store to Memory

4. Arithmetic/Logic Ops.

5. Execution of Complete Instruction

6. Branching Ops.

CO-Unit VI-Basic Processor Unit

40

2.4. Arithmetic Operation

Step Action
1. Address out _ R1
 Y_in
 R_out

2. Address out _R2
 R_out
 F_alu “ADD”
 Z_in

 Address in _ R3
 Z_out
 R_in

ADD R3,R2,R1

CO-Unit VI-Basic Processor Unit

41

Register Transfers

R0

R1

R2

R3

Y

Z register file

ALU

Y_in

R_out
CPU bus

Address_out

1. Address_out  R1

 Y_in

 R_out

CO-Unit VI-Basic Processor Unit

42

Register Transfers

R0

R1

R2

R3

Y

ALU

Z register file

Y_in

Z_in

R_out CPU bus

Address_out

F_alu

 2. Address_out  R2

 R_out

 F_alu  “ADD”

 Z_in

CO-Unit VI-Basic Processor Unit

43

Register Transfers

R0

R1

R2

R3

Y

Z register file

ALU

Z_out Address_in
R_in

CPU bus Address_in  R3

 Z_out

 R_in

CO-Unit VI-Basic Processor Unit

44

Steps in time

Y_in

Z_in

Z_out

R_in

1 2 3 Step

Y

Z

ALU

Z_out

CPU bus

Z_in

Y_in

CO-Unit VI-Basic Processor Unit

46

The Processing Unit

1. Basic Processing Cycle

2. Types of Operations

3. Control Mechanisms
1. Register Transfer

2. Fetch from Memory

3. Store to Memory

4. Arithmetic/Logic Ops.

5. Execution of Complete Instruction

6. Branching Ops.

CO-Unit VI-Basic Processor Unit

47

 2.5. Execution of a Complete Instruction

 1. Fetch instruction

 2. Fetch the operand

 3. Perform operation

 4. Store result

 Example ADD (R3),R1

 [R1]  M([R3]) + [R1]

48

Execution fetch (1)

Step Action

1 PC_out, MAR_in, Read

 Set carry-in ALU

 F_alu = “ADD”

 Z_in

 Z_out, PC_in

 Wait for MFC

3 MDR_out, IR_in
[PC]  [PC]+1

[IR]  M([PC])

Step 1-3:

Instruction fetch and

PC update

Note: for architectures having PC:=PC+4
a different scheme must be used

CO-Unit VI-Basic Processor Unit

[R1]  M([R3]) + [R1]

49

 Fetch instruction

PC

Z

ALU

Z_in

ADD

MAR

 PC_out

carry

MAR_in

Read

WFMC

MDR

IR

1.. PC_out, MAR_in, Read

 Set carry-in ALU

 F_alu = “ADD”

 Z_in

Q) Why Set carry-in ALU?

Q) Why MAR_in?

CO-Unit VI-Basic Processor Unit

[R1]  M([R3]) + [R1]

50

Execution fetch (2)

Step Action

1 PC_out, MAR_in, Read

 Set carry-in ALU

 F_alu = “ADD”

 Z_in

 Z_out, PC_in

 Wait for MFC

3 MDR_out, IR_in

Step 1-3:

instruction

fetch

and PC

update

[PC]  [PC]+1

[IR]  M([PC])

CO-Unit VI-Basic Processor Unit

[R1]  M([R3]) + [R1]

51

Fetch instruction

PC

Z

ALU

PC_in

Z_out

MAR
MAR_in

Read

WFMC

MDR

IR

MDR_in

 Z_out, PC_in

 Wait for MFC

Q What is read into MDR?

CO-Unit VI-Basic Processor Unit

[R1]  M([R3]) + [R1]

52

Execution fetch (3)

Step Action

1 PC_out, MAR_in, Read

 Set carry-in ALU

 F_alu = “ADD”

 Z_in

 Z_out, PC_in

 Wait for MFC

3 MDR_out, IR_in
[IR]  M([PC])

Step 1-3:

instruction

fetch

and PC

update

CO-Unit VI-Basic Processor Unit

[R1]  M([R3]) + [R1]

53

Fetch instruction

PC

Z

ALU

MAR

Read

WFMC

MDR

IR_in

MDR_out

IR

3. MDR_out, IR_in Q What is loaded into IR?

CO-Unit VI-Basic Processor Unit

[R1]  M([R3]) + [R1]

54

 Execute

Step Action

4 Address_out=R3, R_out

 MAR_in

 Read

 Address_out=R1, R_out

 Y_in, Wait for MFC

6 MDR_out, Z_in

 F_alu = “ADD”

7 Address_in=R1, R_in

 Z_out, End

Step 4 and 5:

operand fetch

Perform

addition

Store

Result

CO-Unit VI-Basic Processor Unit

55

 Execute

PC

CPU bus

IR

Decoder

control

R0

R1

R2

R3

register file

MAR

MDR

memory bus

Y

Z

ALU

Read

4. R3_out

 MAR_in

 Read

Q) Role of Decoder?

CO-Unit VI-Basic Processor Unit

56

 Execute

Step Action

4 Address_out=R3, R_out

 MAR_in

 Read

 Address_out=R1, R_out

 Y_in, Wait for MFC

6 MDR_out, Z_in

 F_alu = “ADD”

7 Address_in=R1, R_in

 Z_out, End

Step 4 and 5:

operand fetch

Perform

addition

Store

Result

CO-Unit VI-Basic Processor Unit

57

Execute

PC

C
P

U
 b

u
s

 IR

Decoder

control

R0

R1

R2

R3

register file

MAR

MDR

memory bus

Y

Z

ALU

WFMC

 R1_out

 Y_in, Wait for MFC

Q Where does MDR read from?
CO-Unit VI-Basic Processor Unit

58

 Execute

Step Action

4 Address_out=R3, R_out

 MAR_in

 Read

 Address_out=R1, R_out

 Y_in, Wait for MFC

6 MDR_out, Z_in

 F_alu = “ADD”

7 Address_in=R1, R_in

 Z_out, End

Step 4 and 5:

operand fetch

Perform

addition

Store Result

CO-Unit VI-Basic Processor Unit

59

 Execute

PC

CPU bus

IR

Decoder

control

R0

R1

R2

R3

register file

MAR

MDR

memory bus

Y

Z

ALU

6. MDR_out, Z_in

 F_alu = “ADD”

Q) Who sets F_alu to ADD?

Q Why Z_in?

CO-Unit VI-Basic Processor Unit

[R1]  M([R3]) + [R1]

60

 Execute

Step Action

4 Address_out=R3, R_out

 MAR_in

 Read

 Address_out=R1, R_out

 Y_in, Wait for MFC

6 MDR_out, Z_in

 F_alu = “ADD”

7 Address_in=R1, R_in

 Z_out, End

Step 4 and 5:

operand fetch

Perform

addition

Store

Result

CO-Unit VI-Basic Processor Unit

[R1]  M([R3]) + [R1]

61

 Execute

PC

CPU bus

IR

Decoder

control

R0

R1

R2

R3

register file

MAR

MDR

memory bus

Y

Z

ALU

7. R1_in

 Z_out, End

Q) Role of End?

CO-Unit VI-Basic Processor Unit

62

62

The Processing Unit

1. Basic Processing Cycle

2. Types of Operations

3. Control Mechanisms
1. Register Transfer

2. Fetch from Memory

3. Store to Memory

4. Arithmetic/Logic Ops.

5. Execution of Complete Instruction

6. Branching Ops.

CO-Unit VI-Basic Processor Unit

63

2.6. Branching

Step Action

1-3 <instruction fetch

 as in previous example>

 PC_out, Y_in

5 Offset-field-IR_out

 F_alu = “ADD”

 Z_in

6 PC_in

 Z_out, End

Jump: PC+Offset

CO-Unit VI-Basic Processor Unit

64

 Branching

PC

CPU bus

IR

Decoder

control

R0

R1

R2

R3

register file

MAR

MDR

memory bus

Y

Z

ALU

 PC_out, Y_in

CO-Unit VI-Basic Processor Unit

65

Branching

Step Action

1-3 <instruction fetch

 as in previous example>

 PC_out, Y_in

5 Offset-field-IR_out

 F_alu = “ADD”

 Z_in

6 PC_in

 Z_out, End

CO-Unit VI-Basic Processor Unit

66

 Branching

PC

CPU bus

IR

Decoder

control

R0

R1

R2

R3

register file

MAR

MDR

memory bus

Y

Z

ALU

5. Offset-field-IR_out

 F_alu = “ADD”

 Z_in

CO-Unit VI-Basic Processor Unit

67

Branching

Step Action

1-3 <instruction fetch

 as in previous example>

 PC_out, Y_in

5 Offset-field-IR_out

 F_alu = “ADD”

 Z_in

6 PC_in

 Z_out, End

CO-Unit VI-Basic Processor Unit

68

 Branching

PC

CPU bus

IR

Decoder

control

R0

R1

R2

R3

register file

MAR

MDR

memory bus

Y

Z

ALU

6. PC_in

 Z_out, End

CO-Unit VI-Basic Processor Unit

69

Conditional branching

Step Action

1-3 <instruction fetch

 as in previous example>

 PC_out, Y_in

 If N=0 then End

5 Offset-field-IR_out

 F_alu = “ADD”

 Z_in

6 PC_in

 Z_out, End

JN : PC+Offset

If not Negative

CO-Unit VI-Basic Processor Unit

2. Performing an Arithmetic or Logic Operation2.

Ex. R3 R1+ R2

 What is the sequence of operations ?
Step 1: Output of the register R1 and input of

the register Y are enabled, causing the
contents of R1 to be transferred to Y.

Step 2: The multiplexer’s select signal is set to
select Y causing the multiplexer to gate the
contents of register Y to input A of the ALU.

Step 3: The contents of Z are transferred to

 the destination register R3.

 R1out, Yin

 R2out, SelectY, Add, Zin

 Zout, R3in

70 CO-Unit VI-Basic Processor Unit

B A

Z

ALU

Y in

Y

Z in

Z out

R i in

R i

R i out

b us
Internal processor

Constant 4

MUX Select

Ex. Move (R1),R2.

 The sequence of steps is:

CO-Unit VI-Basic Processor Unit 71

1)R1out, MARin, Read

2)MDRinE, WMFC

3)MDRout, R2in

;desired address is loaded into MAR &

 Read command is issued
;load MDR from memory bus & Wait for
 MFC response from memory
;load R2 from MDR
where WMFC=control signal that causes
processor's control circuitry to wait for
arrival of MFC signal

Note: we have not considered Instruction fetch operation.

Control sequence for the instruction

EX. Move (Rs),Rd

The control-sequence is written as follows

1)PCout, MARin, Read, Select4, Add, Zin
2)Zout, PCin, Yin, WMFC

3)MDRout, IRin

4)Rsin, MARin, Read

5)MDRinE, WMFC

6)MDRout, Rdin, End

CO-Unit VI-Basic Processor Unit 72

Execution of a complete instruction
 Consider the instruction Add (R3),R1

Which adds he contents of a memory-

Location pointed by R3 to register R1.

Executing this instruction requires

 the following actions:

1)Fetch the instruction.
2)Fetch the first operand.

3)Perform the addition.
4)Load the result into R1.

CO-Unit VI-Basic Processor Unit 73

Instruction Execution

Instruction execution proceeds as follows: R1← R1 + [R3]

Step1:The instruction-fetch operation is initiated by loading contents of PC
into MAR & sending a Read request to memory. The Select signal is set to
Select4, which causes the Mux to select constant 4. This value is added to
operand at input B (PC‟s content), and the result is stored in Z

Step2: Updated value in Z is moved to PC.
Step3: Fetched instruction is moved into MDR and then to IR.
Step4: Contents of R3 are loaded into MAR & a
 memory read signal is issued.
Step5: Contents of R1 are transferred to Y to
 Prepare for addition.
Step6: When Read operation is completed,
 memory-operand is available in MDR, and the

 addition is performed.

Step7: Sum is stored in Z, then transferred to R1.

 The End signal causes a new instruction fetch cycle to

 begin by returning to step1.

 CO-Unit VI-Basic Processor Unit 74

Single Bus organization of the data path within a CPU

CO-Unit VI-Basic Processor Unit 75

http://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjS9Oyb8ePZAhUIN48KHdaEA3kQjRwIBg&url=http%3A%2F%2Fslideplayer.com%2Fslide%2F9377818%2F&psig=AOvVaw3QTUlyUHFvQdP7nREUUeE0&ust=1520844417737317

Internal organization of a processor

lines
Data

Address
lines

bus
Memory

Carry-in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1 - ()

Instruction

decoder and

Internal processor

control logic

A B

MUX Select

Constant 4

Execution of a Complete Instruction
Step Action

1 PCout , MAR in , Read,Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDRout , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C

6 MDRout , SelectY,Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor executionof the instruction Add (R3),R1.

Add (R3), R1 R1← R1 + [R3])

Execution of a Complete Instruction

Step Action

1 PCout , MAR in , Read,Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDRout , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C

6 MDRout , SelectY,Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor executionof the instruction Add (R3),R1.

lines
Data

Address
lines

bus
Memory

Carry -in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1-()

Instruction

decoder and

Internal processor

control logic

A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Add R2, R1

R2out

78 CO-Unit VI-Basic Processor Unit

Execution of Branch Instructions

 A branch instruction replaces the contents of PC with the
branch target address, which is usually obtained by adding
an offset X given in the branch instruction.

 The offset X is usually the difference between the branch
target address and the address immediately following the
branch instruction.

 Unconditional branch

79 CO-Unit VI-Basic Processor Unit

Execution of Branch Instructions

The processing starts, as usual, the fetch phase ends in step3.
In step 4, the offset-value is extracted from IR by instruction-decoding circuit.

Since the updated value of PC is already available in register Y, the offset X is gated
onto the bus, and an addition operation is performed.

In step 5, the result, which is the branch-address, is loaded into the PC.

The offset X used in a branch instruction is usually the difference between the
branch target-address and the address immediately following the branch
instruction. (For example, if the branch instruction is at location 1000 and branch
target-address is 1200, then the value of X must be 196, since the PC will be
containing the address 1004 after fetching the instruction at location 1000).

In case of conditional branch, we need to check the status of the

 condition-codes before loading a new value into the PC.

e.g. Offset-field-of-IRout, Add, Zin, If N=0 then END

 If N=0, processor returns to step 1

 immediately after step 4.

 If N=1, step 5 is performed to load a new value into PC

CO-Unit VI-Basic Processor Unit 80

Execution of Branch Instructions

Step Action

1 PC out , MAR in , Read, Select4, Add, Z in

2 Z out , PC in , Y in , WMF C

3 MDR out , IR in

4 Offset-field-of-IR out , Add, Z in

5 Z out , PC in , End

Fig. Control sequence for an unconditional branch instruction.

81 CO-Unit VI-Basic Processor Unit

Multiple-Bus Organization

• Allow the contents of two

different registers to be

accessed simultaneously and

have their contents placed on

buses A and B.

• Allow the data on bus C to

be loaded into a third register

during the same clock cycle.

• Incrementer unit.

• ALU simply passes one of

its two input operands

unmodified to bus C

 control signal: R=A or R=B

http://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjmuaL5u-vZAhWLqY8KHWdCAVYQjRwIBg&url=http%3A%2F%2Fslideplayer.com%2Fslide%2F7791731%2F&psig=AOvVaw3b90V4C06BqKrQQGF84rZg&ust=1521105029031669

 General purpose registers are combined into a single block called registers.
 3 ports,2 output ports –access two different registers and have their

contents on buses A and B
 Third port allows data on bus c during same clock cycle.
 Bus A & B are used to transfer the source operands to A & B inputs of the

ALU.
 ALU operation is performed.
 The result is transferred to the destination over the bus C.

 ALU may simply pass one of its 2 input operands unmodified to bus C.

 The ALU control signals for such an operation R=A or R=B.

 Incrementer unit is used to increment the PC by 4.

 Using the incrementer eliminates the need to add the constant value 4 to
the PC using the main ALU.

 The source for the constant 4 at the ALU input multiplexer can be used to
increment other address such as loadmultiple & storemultiple

Multiple-Bus Organization

 Add R4, R5, R6 for the three-bus organization

Step Action

1 PC out , R=B, MAR in , Read, IncPC

2 WMF C

3 MDR outB , R=B, IR in

4 R4 outA , R5 outB , SelectA, Add, R6 in , End

Fig. Control sequence for the instruction

 .

Instruction execution proceeds as follows in Multiple-Bus
Organization

Step 1:The contents of PC are passed

 through the ALU using R=B control signal & loaded into MAR to start a
memory read operation

 At the same time PC is incrementer by 4

Step 2:The processor waits for MFC

Step 3: Loads the data ,received into MDR ,then transfers them to IR.

Step 4: The execution phase of the instruction requires only one control
step to complete.

Exercise

 What is the control
sequence for execution
of the instruction

 Add R1, (R2)
 including the instruction

fetch phase? (Assume
single bus architecture)

lines
Data

Address
lines

bus
Memory

Carry -in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1-()

Instruction

decoder and

Internal processor

control logic

A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

86 CO-Unit VI-Basic Processor Unit

87

87

The Processing Unit

1. Basic Processing Cycle

2. Types of Operations

3. Control Mechanisms

1. Hardwired

2. Micro-Programmed
Q Who sets F_alu to ADD?

Hardwired Control

88

3 Control Mechanism- Overview

 To execute instructions, the processor must have some
means of generating the control signals needed in the proper
sequence.

 Two categories: hardwired control and micro programmed
control

 Hardwired system can operate at high speed; but with little
flexibility.

89 CO-Unit VI-Basic Processor Unit

Hardwired vs Microprogrammed

 Hardwired

 Use gates to generate signals

 Squeeze out the juice for performance(not flexible)

 Different logic styles possible

 Economical initially

 Small changeredesign

 Microprogrammed

 Store the control signals in the sequence

 Just read from the memory every clock cycle

 Expensive initially

 Additions done by simply changing the microprogram in
control memory

 Diagnostics routine can be made available in memory

90 CO-Unit VI-Basic Processor Unit

3.1 HARDWIRED APPROACH

 Final circuit is obtained by physically connecting gates and
flip flops

 Cost of control logic increases with system complexity

91 CO-Unit VI-Basic Processor Unit

Control Unit Organization

Fig.Control unit organization.

CLK
Clock

Control step

IR
encoder

Decoder/

Control signals

codes

counter

inputs

Condition

External

92 CO-Unit VI-Basic Processor Unit

93

 Hardwired Control -Separating decoding/encoding

 Status
 Flags

Condition
Codes

End

Reset

Run

Control step
counter

Clock

Step decoder

T_1 T_n
Ins_1

 Encoder

Instruction
decoder

IR

Ins_n

Only one set to 1

Z_in

CLK

Q) Role of Run ?

Decoder/encoder block is a combinational-circuit that generates

required control-outputs depending on state of all its inputs.

Step-decoder provides a separate signal line for each step in the

control sequence.
Similarly, output of instruction-decoder consists of a separate line
for each machine instruction.
For any instruction loaded in IR, one of the output-lines INS1

 through INSm is set to 1, And all other lines are set to

The input signals to encoder-block are combined to generate the

individual control- signals Yin, PCout, Add, End and so on.

CO-Unit VI-Basic Processor Unit 94

95

3.1. Hardwired Control -Generation of control signals

ADD

T_6 T_4

BRanch

T_1

Z_in

Z_in = T_1 + T_6 . ADD + T_4 . BR

time slot

This signal is asserted during time-slot T1 for all instructions,

 during T6 for an Add instruction

 during T4 for unconditional branch instruction

The control H/W shown can be viewed as a state m/c that changes from one state to

another in every clock cycle, depending on the content of IR,the conditional codes
and the external inputs

 When RUN=1, counter is incremented by 1 at the

 end of every clock cycle.

 When RUN=0, counter stops counting.

Sequence of operations carried out by this machine is determined by wiring

 of logic elements, hence the name “hardwired”.

CO-Unit VI-Basic Processor Unit 96

Generation End control signal

Figure 7.13.Generation of the End control signal.

T7

Add Branch
Branch<0

T5

End

NN

T4T5

97 CO-Unit VI-Basic Processor Unit

End = T_7 . ADD + T_5 . BR +(T_5 . N + T_4 . /N) .BRN+

99

3.1. Hardwired Control-Performance

 Performance is dependent on:

 Power of instructions

 Cycle time

 Number of cycles per instruction

 Performance improvement by:

 Multiple datapaths

 Instruction prefetching and pipelining

 Caches

100

Complete CPU

Instruction
unit

Floating-point
unit

Integer
unit

Data
Cache

Instruction
Cache

Bus
Interface

Main
Memory

Input/
Output

Processor/CPU

System Bus

Integer
unit

Integer
unit

Floating-point
unit

Floating-point
unit

A Complete Processor

This has separate processing-units to deal with integer data and

 floating-point data.
 A data-cache is inserted between these processing-units & main-
memory.

Instruction-unit fetches instructions
 → from an instruction-cache or
 → from main-memory when desired instructions are not already in cache
 Processor is connected to system-bus & hence to the rest of the
computer by means of a bus interface

 Using separate caches for instructions & data is common practice in
many processors today.
 A processor may include several units of each type to increase the
potential for concurrent operations

CO-Unit VI-Basic Processor Unit 101

102

Micro programmed Control

103

3.2. Micro-programmed control

 All control bits are organized as memory

 Each memory location represents a control setting/word

 Control word (CW) consists of individual bits represent various control-signals

(like Add, End, Zin).

 The control word represents unique combination of (0s and 1s)

 Memory words in micro routine are called micro-instructions.

 Micro-routines are sequences of micro-instructions

 Control stores for all micro-routines of the instruction set .

 Micro-program counter (µ PC) to read control words sequentially
 Every time a new instruction is loaded into IR, output of "starting address
 generator" is loaded into µPC.

 Then, µPC is automatically incremented by clock, causing successive

 microinstructions to be read from CS.

 Control-signals are generated by a program similar to machine language programs

104

3.2. Micro-Programmed Control
Examples of Micro-Instructions

Micro- PC_in MAR_in Z_in

 ...

instruction

1 0 1 1

 ...

2 1 0 0

 ...

3 0 0 0.

..

Microprogrammed Control

 Control signals are generated by a program similar to machine
language programs.

 Control Word (CW); microroutine; microinstruction

P
C i

n

P
C o

ut

M
A

R
in

R
ea

d

M
D

R o
ut

IR
in

Y
in

S
el

ec
t

A
dd Z i
n

Z
ou

t

R
1 ou

t

R
1 i

n

R
3 o

ut

W
M

F
C

E
nd

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

Micro -
instruction

1

2

3

4

5

6

7

Figure 7.15 An example of microinstructions for Figure 7.6.

105 CO-Unit VI-Basic Processor Unit

106

P
C

in

P
C

o
u

t

M
A

R
in

R
e

a
d

M
D

R
o

u
t

IR
in

Y
in

S
e

le
c
t

A
d
d

Z
in

Z
o

u
t

R
1 o

u
t

R
1 i

n

R
3 o

u
t

W
M

F
C

E
n
d

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

Micro -
instruction

1

2

3

4

5

6

7

Figure 7.15 An example of microinstructions for Figure 7.6.

Step Action

1 PCout , MAR in , Read,Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDRout , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C

6 MDRout , SelectY,Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor executionof the instruction Add (R3),R1.

CO-Unit VI-Basic Processor Unit

Microinstructions for Add (R3),R1

Microroutine for the instruction Branch<0

 The previous organization cannot handle the situation when the control
unit is required to check the status of the condition codes or external
inputs to choose between alternative courses of action.

 Use conditional branch microinstruction.

Address Microinstruction

0 PC out , MAR in , Read, Select4, Add, Z in

1 Z out , PC in , Y in , WMF C

2 MDR out , IR in

3 Branch to starting address of appropriate microroutine
.

25 If N=0, then branch to microinstruction 0

26 Offset-field-of-IR out , SelectY, Add, Z in

27 Z out , PC in , End

Fig. Microroutine for the instruction Branch<0.

107 CO-Unit VI-Basic Processor Unit

Micro programme Unit for Conditional Branching

Fig. Organization of the control unit to allow

 conditional branching in the micro program.

Control
store

Clock

generator

Starting and
branch address Condition

codes

inputs
External

CW

IR

m P C

108 CO-Unit VI-Basic Processor Unit

Conditional Branching

In case of conditional branching, microinstructions specify which

of the external inputs, condition-codes should be checked as a

condition for branching to take place.

The starting and branch address generator block loads a new

 address into µPC when a microinstruction instructs it to do so .

To allow implementation of a conditional branch, inputs to this

 block consist of
 → external inputs and condition-codes
 → contents of IR
µPC is incremented every time a new microinstruction is fetched from
 microprogram memory except in following situations

i) When a new instruction is loaded into IR, µPC is loaded with
starting-address of microroutine for that instruction.

ii) When a Branch microinstruction is encountered and branch
condition is satisfied, µPC is loaded with branch-address.

iii) When an End microinstruction is encountered, µPC is loaded with

 address of first CW in microroutine for instruction fetch cycle.

CO-Unit VI-Basic Processor Unit 109

Microinstructions

 A straightforward way to structure microinstructions is to assign
one bit position to each control signal.

 However, this is very inefficient.
 The length can be reduced: most signals are not needed

simultaneously, and many signals are mutually exclusive.
 All mutually exclusive signals are placed in the same group in binary

coding.

110 CO-Unit VI-Basic Processor Unit

1) Assigning individual bits to each control-signal results in long
microinstructions because the number of required signals is usually
large.

2) Available bit-space is poorly used because

 only a few bits are set to 1 in any given microinstruction.
Solution: Signals can be grouped because

 - Most signals are not needed simultaneously.
 - Many signals are mutually exclusive.

Grouping control-signals into fields requires a little more hardware because
decoding-circuits must be used to decode bit patterns of each field into
individual control signals.

Advantage: This method results in a smaller control-store (only 20

 bits are needed to store the patterns for the 42 signals).

CO-Unit VI-Basic Processor Unit 111

 3) Having a separate microroutine for each machine instruction results in

 a large total number of microinstructions and a large control-store.

 4) Execution time is longer because it takes more time to carry out the

 required branches.

Some Drawbacks of microprogrammed control

112

Microprogrammed control (contd..)

Microinstruction format

•Simple approach is to allocate one bit for each control signal
 - Results in long microinstructions, since the number of control signals
 is usually very large.
 - Few bits are set to 1 in any microinstruction, resulting in a poor use
 of bit space.
•Reduce the length of the microinstruction by taking advantage of the fact
that most signals are not needed simultaneously, and many signals are
 mutually exclusive. For example:
 - Only one ALU function is active at a time.
 - Source for a data transfer must be unique.
 - Read and Write memory signals cannot be active simultaneously.

•Group mutually exclusive signals in the same group.

•At most one microperation can be specified per group.

•Use binary coding scheme to represent signals within a group.

113

Microprogrammed control (contd..)

Microinstruction format

Examples:

•If ALU has 16 operations, then 4 bits can be sufficient.
•Group register output signals into the same group, since only one of
these signals will be active at any given time (Why?)
If the CPU has 4 general purpose registers, then PCout, MDRout, Zout,
Offsetout, R0out, R1out, R2out, R3out and Tempout can be placed
in a single group, and 4 bits will be needed to represent these.

114

3.2. Micro-Programmed Control
Structure micro-instructions

 Most simple organization: 1 bit per control signal

 However,

 Many bits needed (e.g., 80-120 bits)

 For many signals, only one is needed per cycle; hence they can be grouped

 Coding is possible: e.g., an address instead of a single control bit per
register

 Alternative approach to reduce the length of the microinstruction:

• Enumerate the patterns of the required signals in all microinstructions.

• Assign each meaningful combination of active control signals a unique code.

• Code represents the microinstruction .

• Grouping control signals into fields requires a little more hardware:

 Decoding circuits are needed to decode patterns to individual control signals.

 Cost of the additional hardware is offset by reduced number of bits

 in each microinstruction:

 Reduces the size of the control store.

 Full encoding can reduce the length of the microinstruction even further,

 but this reduction comes at the expense of increasing the complexity of

 the decoder circuits.

115

3.2. Micro-Programmed Control
Forms of organization

 Little coding: horizontal organization

 Large words

 Little decoding logic

 Fast

 Much coding: vertical organization

 Small control store

 Much decoding logic

 Slower

 Mixed organization

116

3.2. Micro-Programmed Control
Horizontal/Vertical

F0 F1 F2 F3

R0 R1 R2 R3

Horizontal

F0 F1

 Decoder

R0 R1 R2 R3

Vertical

117

3.2. Micro-Programmed Control
Sequencing

 Thus far only branch after fetch

 No sharing of micro-code between micro-routines

 Micro-subroutines lead to more efficient control store

118

3.2. Micro-Programmed Control
Multi-way branching

 Number of two-way branches

 disadvantage: slows down

 More than one branch address in micro-instruction

 disadvantage: more bits required

 bit-ORing if specified branch address

119

3.2. Micro-Programmed Control
Example

 x x x 0 0 0

w y z

x x x w y z

micro-instruction

part of IR

branch
address

OR

actual
branch
address

Mapping of Instruction

Example
Mapping 3-bit operation code to 7-bit address

OP-codes of Instructions

ADD
AND
LDA

0000
0001
0010

Address

0 000 00

0 001 00

0 010 00

Mapping bits 0 xxx 00

ADD Routine

AND Routine

LDA Routine

Control
memory

121

3.2. Micro-Programmed Control
 Example microroutine (1)

ADD (Rsrc)+, Rdst

Instruction Format

OP code 010 Rsrc Rdst

Mode

0 3 4 7 8 10 11

IR

bit 8: direct/indirect
bit 9,10: indexed (11)
 autodecrement(10)
 autoincrement(01)
 register(00)

122

3.2. Micro-Programmed Control
Example microroutine (2)

Address Micro-instruction

0 PC_out, MAR_in, Read, Set carry-in ALU, F_alu = “ADD”, Z_in
 Z_out, PC_in, Wait for MFC

2 MDR_out, IR_in
3 μBranch{μPC101 (from PLA); μPC_5,4[IR_10,9];
 μPC_3{[not.IR_10].[not.IR_9].[IR_8]}

...
121 Rsrc_out, MAR_in, Set carry-in ALU,Read, F_alu = “ADD”, Z_in
122 Z_out, Rscr_in
123 μBranch{μPC 170; μPC_0[not.IR_8]}, WMFC

170 MDR_out, MAR_in, Read, WMFC
171 MDR_out, Y_in
172 Rdst_out, F_alu = “ADD”, Z_in
173 Z_out, Rdst_in, End

FETCH

autoincrement

indirect direct

use bits from IR for
addressing mode

123

3.2. Micro-Programmed Control
Micro branch address

OP code 010 Rsrc Rdst

Mode

0 3 4 7 8 10 11

IR

0 0 1 0 1 0 0 0 1

/IR10./IR9.IR8

PLA

121

101

9

124

3.2. Micro-Programmed Control
Micro branch address

OP code 010 Rsrc Rdst

Mode

0 3 4 7 8 10 11

IR

0 0 1 1 1 1 0 0 1

IR 8

PLA

171

170

125

Microprogram sequencing-

Simple microprogram sequencing:

•Load the starting address into mPC when a new instruction is loaded

into IR.

•Introduce some branching capability within the microprogram through

special branch microinstructions, which specify the branch address.

Disadvantages of the simple approach:

•Large total number of microinstructions and large control store.

•Most machines have several addressing modes, and many combinations of

instructions and addressing modes.

•Separate microroutine for each of these combinations produces a lot of

•duplication of common parts.

•Share as much common code as possible.

•Sharing common code requires many branch instructions to transfer

 control among various parts.

•Execution time is longer because it takes more time to carry out the

 required branches.

126

Microprogrammed control (contd..)

Microprogram sequencing

Consider the following instruction which adds the source operand to

the contents of register Rdst, and places the results in register Rdst.

ADD src, Rdst

Assume that the source operand can be specified in the following

addressing modes:

 - Register.

 - Autoincrement

 - Autodecrement

 - Indexed.

 - Indirect forms of the above methods.

127

Start of instruction fetch.

Microroutines for all the instructions

ADD Rsrc, Rdst

128

Microprogrammed control (contd..)

Start of instruction fetch.

Microroutines for all the instructions

Microinstruction at address 170 is performed in the
register indirect mode.
Microinstruction at address 171 is performed in the
register direct mode.
Microinstruction 170 is bypassed if register direct
mode is used.
One way to bypass microinstruction 170 is to have
the previous microinstruction specify address 170,
and then use an OR gate to change the LSB of the
address to 1.
This technique is called bit-ORing.

ADD Rsrc, Rdst

Branch Address Modification Using Bit-ORing

CO-Unit VI-Basic Processor Unit 129

The micro program in Figure 20 shows that branches are not always
made to a single branch address. This is a direct consequence of
combining simple micro routines by sharing common parts. Consider the
point labeled ∞ in the figure. At this point, it is
necessary to choose between actions required by direct and indirect
addressing modes.
If the indirect mode is specified in the instruction, then the
microinstruction in location 170 is performed to fetch the operand
from the memory. If the direct mode is specified, this fetch must be
bypassed by branching immediately to location 171.
 The most efficient way to bypass microinstruction 170 is to have the
preceding branch microinstructions specify the address 170 and then
use an OR gate to change the least significant it of this address to 1
if the direct addressing mode is involved.
This is known as the bit-ORing technique for modifying branch
addresses.

Alternative Approaches to the bit-ORing

CO-Unit VI-Basic Processor Unit 130

An alternative to the bit-ORing approach is to use two conditional branch

microinstructions allocations 123,143, and 166.

 Another possibility is to include two next address fields within a branch

microinstruction, one for the direct and one for the indirect address modes.

Both of these alternatives are inferior to the bit-Oring technique.

131

Microprogrammed control (contd..)

Microinstructions with the next-address field.

•Several branch microinstructions are required to enable sharing of
 common code.
•The branch microinstructions do not perform any useful operation related
 to data.
•They are required to determine the address of the next microinstruction.
•They slow down the execution of the instruction.

•Ideally we need to assign consecutive addresses to all microinstructions
 that are generally executed one after the other.
•Recall that the next microinstruction is determined by incrementing the
 microprogram counter.
•But due to the goal of sharing as much common code as possible, this is
 not always possible.
•This leads to a significant increase in the branch instructions.

132

Microprogrammed control (contd..)

Microinstructions with the next-address field.

•Powerful alternative is to include an address field as a part of every

microinstruction.

•The address field indicates the location of the next microinstruction to

be fetched.

•In effect, every microinstruction becomes a branch microinstruction in

addition to its other function.

Disadvantages:

•Additional bits are required to specify the address field in every instruction.

•Approximately one-sixth of the control store is devoted to specifying

 the address.

Advantages:

•Separate branch instructions are virtually eliminated.

•Flexible scheme, very few restrictions in assigning addresses to

 microinstructions.

133

3.2. Micro-Programmed Control
Next-address field (1)

 Micro-instruction contains address next micro-instruction

 Larger store needed

 Branch micro-instructions no longer needed

134

Next-address field (2)

 IR Status
flags

Condition
codes

 Decoding circuits

micro-AR

Control store

Next address

Microinstruction decoder

micro-IR

Next-address field

 The microprogram discussed earlier requires several branch
microinstructions, which perform no useful operation in the
datapath.

 A powerful alternative approach is to include an address
field as a part of every microinstruction to indicate the
location of the next microinstruction to be fetched.

 Pros: separate branch microinstructions are virtually
eliminated; few limitations in assigning addresses to
microinstructions.

 Cons: additional bits for the address field (around 1/6)

CO-Unit VI-Basic Processor Unit 135

136

3.2. Micro-Programmed Control
Example

Field 0(8 bits): Next address
Field 1(4 bits): Register address_in
Field 2(4 bits): Register address_out
Field 3(4 bits): Other registers_in
Field 4(4 bits): Function ALU
Field 5(2 bit) : Read/Write/Nop
Field 6(1 bit) : Carry-in ALU
Field 7(1 bit) : WMFC
Field 8(1 bit) : End
............ PLA/ORing etc

 F1 F2 F3 F4 F5 F6 F7 F8 F0

137

Partial Format for the field encoded Microinstructions

F2 (3 bits)

000: No transfer

001: PC in

010: IR in

011: Z in

100: R0 in

101: R1 in

110: R2 in

111: R3 in

F1 F2 F3 F4 F5

F1 (4 bits) F3 (3 bits) F4 (4 bits) F5 (2 bits)

0000: No transfer

0001: PC out

0010: MDR out

0011: Z out

0100: R0 out

0101: R1 out

0110: R2 out

0111: R3 out

1010: TEMP out

1011: Offset out

000: No transfer

001: MAR in

010: MDR in

011: TEMP in

100: Y in

0000: Add

0001: Sub

1111: XOR

16 ALU
functions

00: No action

01: Read

10: Write

Microinstruction

F6 F7 F8

F6 (1 bit) F7 (1 bit) F8 (1 bit)

0: SelectY

1: Select4

0: No action

1: WMFC

0: Continue

1: End

•Each group occupies a
large enough field to
represent all the signals.
•Most fields must include
one inactive code, which
specifies no action.
•All fields do not have to
include inactive code.

CO-Unit VI-Basic Processor Unit

What is the price paid for
this scheme?

Require a little more hardware

138

3.2. Micro-Programmed Control
Organization

 Micro-program is often placed in ROM on CPU chip

 Some machines had writable control store, i.e. user could

change instruction set

Further Discussions

 Prefetching

 Emulation

139 CO-Unit VI-Basic Processor Unit

140

Prefetching

 Microprogrammed control leads to slower operating speed
because of the time it takes to fetch microinstructions from
the control store.

 To achieve faster operation, the next microinstruction can
be prefetched while the current one is being executed.

 Execution time can be overlapped with the fetch time.

 the next microinstruction is pre-fetched while the current
one is being executed.

 Prefetching microinstructions presents some difficulties:
 Status flags and the results of the current microinstruction

that is being executed are necessary to determine the address
of the next microinstruction.

 Straightforward prefetching may occassionally fetch a wrong
instruction.

 Fetch must be repeated.

 Disadvantages/difficulties are more than balance the
increased operation speed.

141

Emulation

 The main function of microprogrammed control is to provide a means for
simple, flexible and relatively inexpensive execution of machine
instruction.

 Control offers the flexibility to add new instructions to the instruction
set of a processor.

 New microroutines need to be added to implement the new
instructions.

 Add to the instruction set of a given computer M1 an entirely new set of
instructions that is in fact the instruction set of a different computer M2.

 Programs written in the machine language of M2 can be run on M1.

 M1 emulates M2.

 Emulation allows transition to new computer systems with minimal
disruption.

 Emulation is easiest when the machines involved have similar
architecture .

 Emulation allows us to replace obsolete equipment with more up-to-date
 machines.
 If the replacement computer fully emulates the original one, then
 no software changes have to be made to run existing programs

Implementation of the Microroutine

142

Address Microinstruction

(octal)

000 PC
out

, MAR
in

, Read, Select 4 , Add, Z
in

001 Z
out

, PC
in

, Y
in

, WMFC

002 MDR
out

, IR
in

003 m Branch { m PC  101 (from Instruction decoder);

m PC
5,4

 [IR
10,9

]; m PC
3



121 Rsrc
out

, MAR
in

, Read, Select4, Add, Z in

122 Z
out

, Rsrc
in

123

170 MDR
out

, MAR
in

, Read, WMFC

171 MDR
out

, Y
in

172 Rdst
out

, SelectY , Add, Z
in

173 Z
out

, Rdst
in

, End

[IR 10]  [IR 9]  [IR 8]}

m Branch { m PC  170; m PC 0
 [IR 8]}, WMFC

CO-Unit VI-Basic Processor Unit

Implementation of the Microroutine

(See Figure 7.23 for encoded signals.)

Figure 7.24. Implementation of the microroutine of Figure 7.21 using a

1

0

1

11110

0111110

001

001

1

21 0

00

0

00

0

0

0

0

0

0

0

0

0

0

0 0

0

0

00

0 0

0101

110

37

7

00000000

0 1111

110

0

0

0

17

07

F9

0

0

0

0

0

0

F10

0

0

0

0

0

0

00

0

0

0

0

0

0

F8F7F6F5F4

000 0 0 0 0 0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0 1

1

0

0

0 0

1

0

0

0

10000

0000

1100000

10

0

0

0

0

0

0

1

0 0

0

0

0

0

0

00 01

000

000

001

110

100

10

F2

1

110 0 0 0 0 0

1

1

221

0

11110

111 00

1

1

2

0

21

0

00

address

Octal

111 00000

1 0000000

10000000

F0 F1

0

0 0 10 0

010

010

0 11

001

110

100

0

0

0

1

1

0

1

F3

 next-microinstruction address field.

011000 0 0 0 0 00 00 00000 0 0 0 0 030 0 00 0 0

143 CO-Unit VI-Basic Processor Unit

decoder

Microinstruction

Control store

Next address F1 F2

Other control signals

F10F9F8

Decoder

Decoder

circuits
Decoding

Condition

External

codes

inputs

Rsrc RdstIR

Rdstout

Rdstin

Rsrcout

Rsrcin

mAR

InstDecout

ORmode

ORindsrc

R15in R15out R0in R0out

Figure 7.25. Some details of the control-signal-generating circuitry.

bit-ORing

Feel happy to smile
 Always wear a Smile
Not because life is full of
 reasons to smile
But because your smile is a
 reason for many others to smile.

http://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwjY_PaokenZAhXCvI8KHePJBeYQjRwIBg&url=http%3A%2F%2Fwondrlust.com%2Faction%2Fyour-smile-could-make-someone-elses-day%2F&psig=AOvVaw3GpBftJZVUUxj2W2i1fALd&ust=1521024843786921

http://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiC8LzFienZAhUOSI8KHVzHCzAQjRwIBg&url=http%3A%2F%2Fwww.bestsayingsquotes.com%2Fquote%2Fhope-you-always-find-a-reason-to-smile-1340.html&psig=AOvVaw0TG6zqoRliX1mOHlyagrqj&ust=1521021173886753

Don’t forget to smile

http://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjcs52cjunZAhUZT48KHYxHAXkQjRwIBg&url=http%3A%2F%2Fwww.momjunction.com%2Farticles%2Fcute-smiling-baby-images-will-make-day_0074782%2F&psig=AOvVaw3xGnHjfRFkRTnFvoV6j0oL&ust=1521023919468402

149

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiDx8aohunZAhXMpo8KHW1vBKAQjRwIBg&url=https%3A%2F%2Fgeniusquotes.org%2Ftag%2Fsmile-quotes%2F&psig=AOvVaw0TG6zqoRliX1mOHlyagrqj&ust=1521021173886753

All the best

Do well in the examinations

Wish you all success

 God bless you.

THANK YOU

