
Topics covered:
Course outline and schedule
Introduction

Computer Organization

Unit 2. Machine Instructions and Programs

13.12.17

Dr e v prasad

2Chapter 2 - Machine Instructions & Programs

Chapter 2.
Machine Instructions and Programs

Objectives

 Machine instructions and program execution, including
branching and subroutine call and return operations.

 Number representation and addition/subtraction in the 2’s-
complement system.

 Addressing methods for accessing register and memory
operands.

 Assembly language for representing machine instructions,
data, and programs.

 Program-controlled Input/output operations.

3Chapter 2 - Machine Instructions & Programs

Number, Arithmetic
Operations, and Characters

4Chapter 2 - Machine Instructions & Programs

Signed Integer

 3 major representations:

Sign and magnitude

One’s complement

Two’s complement

 Assumptions:

4-bit machine word

16 different values can be represented

Roughly half are positive, half are negative

5Chapter 2 - Machine Instructions & Programs

Sign and Magnitude Representation

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-0

-1

-2

-3

-4

-5

-6

-7

0 100 = + 4

1 100 = - 4

+

-

 High order bit is sign: 0 = positive (or zero), 1 = negative
Three low order bits is the magnitude:

0 (000) thru 7 (111)
 Number range for n bits = (+/-) 2n-1 -1
Two representations for 0

6Chapter 2 - Machine Instructions & Programs

One’s Complement Representation

Subtraction implemented by addition & 1's complement

Still two representations of 0! This causes some problems

Some complexities in addition

perform binary addition, then add in an end-around carry value.

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-7

-6

-5

-4

-3

-2

-1

-0

0 100 = + 4

1 011 = - 4

+

-

7Chapter 2 - Machine Instructions & Programs

Two’s Complement Representation

Only one representation for 0

One more negative number than positive number

0000

0111

0011

1011

1111

1110

1101

1100

1010

1001

1000

0110

0101

0100

0010

0001

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0 100 = + 4

1 100 = - 4

+

-

like 1's comp
except
shifted
one position
clockwise

8Chapter 2 - Machine Instructions & Programs

Notation Min Max
Unsigned: 0 255
One's Comp:-127 +127
Two's Comp:-128 +127

Binary, Signed-Integer Representations

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

0

0

1

1

0

0

0

0

1

1

0

0

1

1

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

1+

1-

2+

3+

4+

5+

6+

7+

2-

3-

4-

5-

6-

7-

8-

0+

0-

1+

2+

3+

4+

5+

6+

7+

0+

7-

6-

5-

4-

3-

2-

1-

0-

1+

2+

3+

4+

5+

6+

7+

0+

7-

6-

5-

4-

3-

2-

1-

b
3

b
2
b

1
b

0

Sign and
magnitude 1's complement 2's complement

B Values represented

Figure 2.1. Binary, signed-integer representations. 9

Addition and Subtraction – 2’s Complement

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111

If carry-in to the high
order bit = carry-out
then ignore
carry
if carry-in differs from
carry-out then overflow

Simpler addition scheme makes twos complement the most common
choice for integer number systems within digital systems

10Chapter 2 - Machine Instructions & Programs

2’s-Complement Add and Subtract Operations

1 1 0 1
0 1 1 1

0 1 0 0

0 0 1 0
1 1 0 0

1 1 1 0

0 1 1 0
1 1 0 1

0 0 1 1

1 0 0 1
0 1 0 1

1 1 1 0

1 0 0 1
1 1 1 1

1 0 0 0

0 0 1 0
0 0 1 1

0 1 0 1

4+()

2-()

3+()

2-()

8-()

5+()

+

+

+

+

+

+

1 1 1 0

0 1 0 0
1 0 1 0

0 1 1 1
1 1 0 1

0 1 0 0

6-()

2-()

4+()

3-()

4+()

7+()

+

+
(b)

(d)1 0 1 1
1 1 1 0

1 0 0 1

1 1 0 1
1 0 0 1

0 0 1 0
0 1 0 0

0 1 1 0
0 0 1 1

1 0 0 1
1 0 1 1

1 0 0 1
0 0 0 1

0 0 1 0
1 1 0 1

0 1 0 1

0 0 1 0
0 0 1 1

5-()

2+()
3+()

5+()

2+()
4+()

2-()

7-()

3-()
7-()

6+()
3+()

1+()

7-()
5-()

7-()

2+()
3-()

+

+

-

-

-

-

-

-

(a)

(c)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 2.4. 2's-complement Add and Subtract operations. 11

Overflow - Add two positive numbers to get a negative
number or two negative numbers to get a positive number

5 + 3 = -8 -7 - 2 = +7

0000

0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110

1111

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

0000

0001

0010

0011

1000

0101

0110

0100

1001

1010

1011

1100

1101

0111

1110

1111

+0

+1

+2

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

-3

-2

-1

12Chapter 2 - Machine Instructions & Programs

Overflow in 2’s-Complement Addition

Overflow Conditions

5

3

-8

0 1 1 1
0 1 0 1

0 0 1 1

1 0 0 0

-7

-2

7

1 0 0 0
1 0 0 1

1 1 0 0

1 0 1 1 1

5

2

7

0 0 0 0
0 1 0 1

0 0 1 0

0 1 1 1

-3

-5

-8

1 1 1 1
1 1 0 1

1 0 1 1

1 1 0 0 0

Overflow Overflow

No overflow No overflow

Overflow when carry-in to the high-order bit does not equal carry out

13Chapter 2 - Machine Instructions & Programs

Chapter 2 - Machine Instructions & Programs 14

2’s-Complement Addition-examples 1

Chapter 2 - Machine Instructions & Programs 15

2’s-Complement Addition-examples 2

Sign Extension

 Task:

 Given w-bit signed integer x

 Convert it to w+k-bit integer with same value

 Rule:

 Make k copies of sign bit:

 X = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X • • • • • •

• • •

w

wk
16Chapter 2 - Machine Instructions & Programs

Sign Extension Example

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

ix 15213 00 00 C4 92 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

17Chapter 2 - Machine Instructions & Programs

18Chapter 2 - Machine Instructions & Programs

Memory Locations,
Addresses, and Operations

Memory Location, Addresses, and Operation

 Memory consists of
many millions of
storage cells, each of
which can store 1 bit.

 Data is usually
accessed in n-bit
groups. n is called word

length.

second word

first word

Figure 2.5. Memory words.

nbits

last word

i th word

•
•
•

•
•
•

19Chapter 2 - Machine Instructions & Programs

Memory Location, Addresses, and Operation

 32-bit word length example

(b) Four characters

charactercharactercharacter character

(a) A signed integer

Sign bit: for positive numbers
for negative numbers

ASCIIASCIIASCIIASCII

32 bits

8 bits 8 bits 8 bits 8 bits

b31 b30 b1 b0

b31 0=

b31 1=

• • •

20

Memory Location, Addresses, and Operation

 To retrieve information from memory, either for one word or one
byte (8-bit), addresses for each location are needed.

 A k-bit address memory has 2k memory locations, namely 0 to (2k-
1), called memory space.

 24-bit memory: 224 = 16,777,216 = 16M (1M=220)

 32-bit memory: 232 = 4G (1G=230)

 1K (kilo)=210

 1T (tera)=240

 1P (peta)=250

21Chapter 2 - Machine Instructions & Programs

Memory Location, Addresses, and Operation

 It is impractical to assign distinct addresses to individual bit
locations in the memory.

 The most practical assignment is to have successive
addresses refer to successive byte locations in the memory –
byte-addressable memory.

 Byte locations have addresses 0, 1, 2, … If word length is 32
bits, they successive words are located at addresses 0, 4,
8,…

22Chapter 2 - Machine Instructions & Programs

Big-Endian and Little-Endian Assignments

Figure 2.7. Byte and word addressing.

Big-Endian: lower byte addresses are used for the most
significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are
used for the less significant bytes of the word

23

2
k

4- 2
k

3- 2
k

2- 2
k

1- 2
k

4-2
k

4-

0 1 2 3

4 5 6 7

00

4

2
k

1- 2
k

2- 2
k

3- 2
k

4-

3 2 1 0

7 6 5 4

Byte addressByte address

(a) Big-endian assignment (b) Little-endian assignment

4

word address

•
•
•

•
•
•

Memory Location, Addresses, and Operation

 Address ordering of bytes

 Word alignment
 Words are said to be aligned in memory if they begin

at a byte addr. that is a multiple of the num of bytes
in a word.
• 16-bit word: word addresses: 0, 2, 4,….
• 32-bit word: word addresses: 0, 4, 8,….
• 64-bit word: word addresses: 0, 8, 16,….

 Access numbers, characters, and character strings

24Chapter 2 - Machine Instructions & Programs

Memory Operation

 Load (or Read or Fetch)

 Copy the content. The memory content doesn’t change.

 Address – Load

 Registers can be used

 Store (or Write)

 Overwrite the content in memory

 Address and Data – Store

 Registers can be used

25Chapter 2 - Machine Instructions & Programs

26Chapter 2 - Machine Instructions & Programs

Instructions and Instruction Sequencing

“Must-Perform” Operations

 Task carried out by a computer program consists of a
sequence of small steps :

 Data transfers between the memory and the processor
registers

Load and store

 Arithmetic and logic operations on data

adding two numbers , complementing a number

 Program sequencing and control

testing a particular condition ,transfer control

 I/O transfers

Reading a character from the key board

Sending a character to be displayed on a display screen

27Chapter 2 - Machine Instructions & Programs

Register Transfer Notation

 A symbolic notation to describe the microoperation
transfers among registers.

 register transfer language (RTL) is a kind of intermediate
representation (IR) that is very close to assembly language,
such as that which is used in a compiler.

 It is used to describe data flow at the register-
transfer level of an architecture.

 Identify a location by a symbolic name standing for its
hardware binary address (LOC, R0,…)

 Contents of a location are denoted by placing square
brackets around the name of the location

(R1←[LOC], R3 ←[R1]+[R2])
 Representation of a (conditional) transfer

P: R2 ← R1

 Register Transfer Notation (RTN)

28Chapter 2 - Machine Instructions & Programs

Register Transfer.

t t+1

Clock

Load

Transfer occurs here

Synchronized
with the clock

n

Clock

R1

R2
Control

Circuit
LoadP

Hardware implementation of a controlled transfer: P: R2 ← R1

Block diagram:

Timing diagram

Assembly Language Notation

 Represent machine instructions and programs.

 Move LOC, R1 = R1←[LOC]

 Add R1, R2, R3 = R3 ←[R1]+[R2]

30Chapter 2 - Machine Instructions & Programs

CPU Organization

 Single Accumulator

 Result usually goes to the Accumulator

 Accumulator has to be saved to memory quite often

 General Register

 Registers hold operands thus reduce memory traffic

 Register bookkeeping

 Stack

 Operands and result are always in the stack

31Chapter 2 - Machine Instructions & Programs

Instruction Formats

 Three-Address Instructions

 ADD R1, R2, R3 R1 ← R2 + R3

 Two-Address Instructions

 ADD R1, R2 R1 ← R1 + R2

 One-Address Instructions

 ADD M AC ← AC + M[AR]

 Zero-Address Instructions

 ADD TOS ← TOS + (TOS – 1)

 RISC Instructions

 Lots of registers.

 Memory is restricted to Load & Store

Opcode Operand(s) or Address(es)

32Chapter 2 - Machine Instructions & Programs

three address instruction
 Three explicit operands

per instruction

 Operands specify
source, destination, and
result

 Directly operate on
memory variables or
registers

 Use Temp variables

 Operations are with the
memory variables/two
(one) memory variable(s)
and one (two) register(s)

12

5

20

data

27

10000

10001

10002

10003

Memory

CPU

5R0

37R1

32R2

A

B

C

D

D = A+B+C

Note : ADD R2,R0,R1 means R2 = R0+R1

two address instruction
 Two explicit operands per

instruction

 Result overwrites one of the
operands

 Operands known as source
and destination

 Works well for instructions
such as memory copy

 Uses Move (MOV) instruction

 MOV instruction transfers
the operands between
memory and processor
registers

 Operations are in the
registers / one in register
and one in memory

D = A+B+C

Note : ADD R0,R1 means R0 = R0+R1

12

5

20

data

27

10000

10001

10002

10003

Memory

CPU

5R0

37R1

32R2

A

B

C

D

One address instruction

 One explicit operand per
instruction

 Second operand is implicit
– Always found in hardware
register – Known as
accumulator (reg A)

 AC contains the result of
all operations.

 Uses Load (LDA) and Store
(STA) to access memory

 Operations are in the
registers/ one can be in
memory

12

5

20

data

27

10000

10001

10002

10003

Memory

CPU

A

B

C

D

5ACC

Note : ADD [10001] means Acc = Acc + [10001]

D = A+B+C

Instruction Formats

Example: Evaluate (A+B)  (C+D)

 Three-Address

1. ADD R1, A, B ; R1 ← M[A] + M[B]

2. ADD R2, C, D ; R2 ← M[C] + M[D]

3. MUL X, R1, R2 ; M[X] ← R1  R2

 Three-address instruction formats can use each address field
to specify either a processor register or a memory operand.

 It is assumed that the computer has two processor registers,
R1 and R2. The symbol M [X] denotes the operand at memory
address symbolized by A.

 The advantage of the three-address format is that it results
in short programs when evaluating arithmetic expressions.

 The disadvantage is that the binary-coded instructions
require too many bits to specify three addresses.

36Chapter 2 - Machine Instructions & Programs

Instruction Formats

Example: Evaluate (A+B)  (C+D)

 Two-Address

1. MOV R1, A ; R1 ← M[A]

2. ADD R1, B ; R1 ← R1 + M[B]

3. MOV R2, C ; R2 ← M[C]

4. ADD R2, D ; R2 ← R2 + M[D]

5. MUL R1, R2 ; R1 ← R1  R2

6. MOV X, R1 ; M[X] ← R1

 each address field can specify either a processor
register or a memory word.

 MOV instruction moves or transfers the operands to
and from memory and processor registers .

 The first symbol listed in an instruction is assumed
to be both a source and the destination

37Chapter 2 - Machine Instructions & Programs

Instruction Formats

Example: Evaluate (A+B)  (C+D)

 One-Address

1. LOAD A ; AC ← M[A]

2. ADD B ; AC ← AC + M[B]

3. STORE T ; M[T] ← AC

4. LOAD C ; AC ← M[C]

5. ADD D ; AC ← AC + M[D]

6. MUL T ; AC ← AC  M[T]

7. STORE X ; M[X] ← AC

 One-address instructions use an implied accumulator (AC)
register for all data manipulation.

 All operations are done between the AC register and a
memory operand

 Uses LOAD and STORE instructions to transfer the
operands between memory and processor registers.

38Chapter 2 - Machine Instructions & Programs

Instruction Formats
Example: Evaluate (A+B)  (C+D)

 Zero-Address

1. PUSH A ; TOS ← A

2. PUSH B ; TOS ← B

3. ADD ; TOS ← (A + B)

4. PUSH C ; TOS ← C

5. PUSH D ; TOS ← D

6. ADD ; TOS ← (C + D)

7. MUL ; TOS ← (C+D)(A+B)

8. POP X ; M[X] ← TOS

 A stack-organized computer does not use an address field
for the instructions ADD and MUL.

 The PUSH and POP instructions, need an address field to
specify the operand that communicates with the stack.

39Chapter 2 - Machine Instructions & Programs

Instruction Formats

Example: Evaluate (A+B)  (C+D)

 RISC

1. LOAD R1, A ; R1 ← M[A]

2. LOAD R2, B ; R2 ← M[B]

3. LOAD R3, C ; R3 ← M[C]

4. LOAD R4, D ; R4 ← M[D]

5. ADD R1, R1, R2 ; R1 ← R1 + R2

6. ADD R3, R3, R4 ; R3 ← R3 + R4

7. MUL R1, R1, R3 ; R1 ← R1  R3

8. STORE X, R1 ; M[X] ← R1

 Uses registers fro all operations

 Uses LOAD and STORE instructions for operand
transfer.

40Chapter 2 - Machine Instructions & Programs

Chapter 2 - Machine Instructions & Programs 41

Practice on the following expression
Y=(A-B)/(C+D x E)

Chapter 2 - Machine Instructions & Programs 42

Example: Y=(A-B)/(C+D x E)

Three
Addresses:
SUB Y, A, B
MPY T, D, E
ADD T, T, C
DIV Y, Y, T

Two Addresses
MOV Y, A
SUB Y, B
MOV T, D
MPY T,E
ADD T,C
DIV Y, T

One Addresses:
LOAD D
MPY E
ADD C
STOR Y
LOAD A
SUB B
DIV Y

Stack (0 address)
Push A
Push B
SUB
Push C
Push D
Push E
MPY
ADD
DIV
Pop Y

Using Registers

 Registers are faster

 Shorter instructions

 The number of registers is smaller (e.g. 32 registers
need 5 bits)

 Potential speedup

 Minimize the frequency with which data is moved back and
forth between the memory and processor registers.

43Chapter 2 - Machine Instructions & Programs

Instruction Execution and Straight-Line Sequencing

R0,C

B,R0

A,R0

Movei + 8

Begin execution here Movei

ContentsAddress

C

B

A

the program
Data for

segment
program
3-instruction

Addi + 4

Figure 2.8. A program for C ¬ [A] + [B].

Assumptions:
- One memory operand

per instruction
- 32-bit word length
- Memory is byte

addressable
- Full memory address

can be directly specified
in a single-word instruction

Two-phase
procedure
-Instruction fetch
-Instruction
execute

44Chapter 2 - Machine Instructions & Programs

Branching

Figure 2.9. A straight-line program for adding n numbers.

NUM n

NUM2

NUM1

R0,SUM

NUM n,, R0

NUM3,R0

NUM2,R0

NUM1,R0

Add

Add

Move

SUM

i

Move

Add

i 4n+

i 4n 4-+

i 8+

i 4+

•
•
•

•
•
•

•
•
•

45Chapter 2 - Machine Instructions & Programs

Branching

Figure 2.10. Using a loop to add n
numbers.

Program

NUM

NUM2

NUM1

LOOP

loop

N

SUM

R1,NMove

n

R0,SUM

R1
"Next" number to R0

LOOP

Decrement

Move

Determine address of
"Next" number and add

n

R0Clear

Branch>0

•
•
•

•
•
•

Branch target

Conditional branch

46Chapter 2 - Machine Instructions & Programs

 Condition code flags

 N /SF (negative/sign)

 ZF (zero)

 VF (overflow)

 CF (carry)

 PF (Parity Flag)

 AF (Auxiliary Flag)

 Condition code register / status register

47Chapter 2 - Machine Instructions & Programs

Status flags (CF, PF, AF, ZF, SF, OF)

Set to represent the result of certain operations

Used to control conditional jump instructions

Different instructions affect different flags

Chapter 2 - Machine Instructions & Programs 48

Status Flags
Carry (CF) : carry or borrow at MSB in add or subtract

last bit shifted out
Parity (PF) : low byte of result has even parity (PF)
Auxiliary (AF) : carry or borrow at bit 3
Zero (ZF): result is 0
Sign (SF): result is negative
Overflow (OF/VF): signed overflow occurred during add or subtract

1) CF = 1 if there is a carry out from the MSB on addition, or there is a
borrow into the MSB on subtraction

CF = 0 otherwise
CF is also affected by shift and rotate instructions

2) PF = 1 if the low byte of a result has an even number of ones (even parity)
PF = 0 otherwise (odd parity)

3) AF = 1 if there is a carry out from bit 3 on addition, or there is a borrow
into the bit 3 on subtraction
AF = 0 otherwise

AF is used in binary-coded decimal (BCD) operations.

Condition Codes/Flags

Chapter 2 - Machine Instructions & Programs 49

4) ZF = 1 for a zero result
ZF = 0 for a non-zero result

5) SF = 1 if the MSB of a result is 1; it means the result is negative if you
are giving a signed interpretation

SF = 0 if the MSB is 0
6) OF/VF = 1 if signed overflow occurred

OF/VF = 0 otherwise
(Signed) Overflow Can only occur when adding numbers of the same sign
(subtracting with different signs)
Detected when carry into MSB is not equal to carry out of MSB

Easily detected because this implies the result has a different sign
than the sign of the operands.

Programs can ignore the Flags!

Chapter 2 - Machine Instructions & Programs 50

10010110

+ 10100011

00111001

Carry in = 0, Carry out = 1

Neg+Neg=Pos

Signed overflow occurred : OF/VF= 1 (set)

00110110

+ 01100011

10011001

Carry in = 1, Carry out = 0

Pos+Pos=Neg

Signed overflow occurred : OF/VF = 1 (set)

Signed Overflow (Example)

Example 1

Example 2

Chapter 2 - Machine Instructions & Programs 51

10010110
+ 01100011
11111001

Carry in = 0, Carry out = 0
Neg+Pos=Neg
No Signed overflow occurred : OF /VF= 0 (clear)

10010110
+ 11110011
10001001

Carry in = 1, Carry out = 1
Neg+Neg=Neg
No Signed overflow occurred : OF /VF= 0 (clear)

Examples of No Signed Overflow

Example 3

Example 4

Chapter 2 - Machine Instructions & Programs 52

The carry flag is used to indicate if an unsigned operation overflowed

•The processor only adds or subtracts - it does not care if the data is signed

or unsigned!
10010110

+ 11110011

10001001

Carry out = 1

Unsigned overflow occurred : CF = 1 (set)

Unsigned Overflow (Example)

Example 5

Conditional Branch Instructions

 Example:

 A: 1 1 1 1 0 0 0 0

 B: 0 0 0 1 0 1 0 0

A: 1 1 1 1 0 0 0 0

+(−B): 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 0

C = 1

S = 1

V = 1

Z = 0

53Chapter 2 - Machine Instructions & Programs

A=0

D7 D6 D5 D4 D3 D2 D1 D0

Status Bits

ALU

V Z S C

Zero Check

Cn

Cn-1

Fn-1

A B

F

54Chapter 2 - Machine Instructions & Programs

ADD and SUB - all flags affected

INC and DEC - all except CF

Addressing Modes

55Chapter 2 - Machine Instructions & Programs

 To give programming versatility to the user by providing
such facilities as pointers to Memory, counters for loop
control, indexing of data, and program relocation .

To reduce the number of bits in the addressing field of the
instruction.

 The availability of the addressing modes gives the
experienced assembly language programmer flexibility
for writing programs that are more efficient with respect
to the number of instructions and execution time.

Why use of use addressing mode techniques ?

The different ways in which the operand address
(registers/memory) is specified in an instruction are referred
to as addressing modes.

Generating Memory Addresses

 How to specify the address of branch target?

 Can we give the memory operand address directly in a
single Add instruction in the loop?

 Use a register to hold the address of NUM1; then
increment by 4 on each pass through the loop.

56Chapter 2 - Machine Instructions & Programs

Addressing Modes

 Implied

 AC is implied in “ADD M[AR]” in “One-Address” instr.

 TOS is implied in “ADD” in “Zero-Address” instr.

 Immediate
 The operand is given explicitly in the instruction

 The use of a constant in “MOV R1, 5”, i.e. R1 ← 5

 Register

 Indicate which register holds the operand

 The operand is the contents of a processor register; the name

 (address) of the register is given in the instruction.

 Effective address (EA) = R

 MOV R1, R2

Opcode Mode ...

57Chapter 2 - Machine Instructions & Programs

Addressing Modes

 Register Indirect

 Indicate the register that holds the number of the
register that holds the operand

MOV R1, (R2) or MOV R1, (LOC)

 Autoincrement / Autodecrement

 Access & update in 1 instr.

 Direct Address (ABSOLUTE MODE)

 Use the given address to access a 300

 memory location.

Effective address (EA) = address field (A)

The operand is in a memory location;

the address of this location is given explicitly in the
instruction

e.g. ADD A

.

R1

R2 = 300

5

58Chapter 2 - Machine Instructions & Programs

Addressing Modes

 Indirect Address

 Indicate the memory location that holds the address of
the memory location that holds the data

 The register or memory

 location that contains the address of an

 operand is called a pointer.

 EA= pointer

 EA = (A)

AR = 101

100

101

102

103

104

0 1 0 4

1 1 0 A

59Chapter 2 - Machine Instructions & Programs

The effective address of the operand is the contents of a register or memory
location whose address appears in the instruction.

100

101

102

103

104

0

1

2

Addressing Modes

 Relative Address

 EA = PC + Relative Addr

AR = 100

1 1 0 A

PC = 2

+

Could be Positive or
Negative

(2’s Complement)

60Chapter 2 - Machine Instructions & Programs

Addressing Modes

 Indexed

 EA = Index Register + Relative Addr

100

101

102

103

104

AR = 100

1 1 0 A

XR = 2

+

Could be Positive or
Negative

(2’s Complement)

Useful with
“Autoincrement” or
“Autodecrement”

61Chapter 2 - Machine Instructions & Programs

Addressing Modes

 Base Register

 EA = Base Register + Relative Addr

100

101

102

103

104

BR = 100

0 0 0 A

AR = 2

+

Could be Positive or
Negative

(2’s Complement)

Usually points to
the beginning of

an array

0 0 0 5

0 0 1 2

0 1 0 7

0 0 5 9

62Chapter 2 - Machine Instructions & Programs

1. Immediate Addressing Mode

The operand is specified with in the instruction.

Operand itself is provided in the instruction rather than its
address

Move Immediate

MVI A , 15h ; A ←15 H ; 15 h is the immediate operand

Add Immediate

ADI 3Eh ; A ← A + 3E H; 3E h is the immediate operand

2. Register Addressing Mode

The operand is specified with in one of the processor registers.

Instruction specifies the register in which the operand is

stored.

Move

; Here A is the operand specified MOV C , A C ← A

Add

ADD B ; A ← A + B

3. Register Indirect Addressing Mode

The instruction specifies the register in which the memory

address of operand is placed.

Move AMOV A , M ← [[H][L]]

It moves the data from memory location specified by HL register
pair to A

EX 1.Register Indirect Addressing Mode

MOV A , M A ← [[H][L]]

It moves the data from memory location specified by HL
register pair to A.

Before After

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

A A

H H

L L

A ← [2805] A ← A9

0505

2828

A9

A9A9

4. Direct Addressing Mode

The instruction specifies the direct address of the operand.

The memory address is specified where the actual
operand is.

Load Accumulator

LDA 2805h A ← [2805]

It loads the data from memory location 2805 to A.

Store Accumulator

STA 2803h [2803] ← A

It stores the data from A to memory location 2803.

Ex 1.Direct Addressing Mode

LDA 2805 H A ← [2805]

It loads the data from the memory location 2805 H to A

Before After

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

A A

A ← [2805] A ← 5C

5C

5C5C

Ex 2.Direct Addressing Mode

STA 2803h [2803] ← A

It copies the data stored in Register A in memory location 2803.

Before After

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

A A

[2803] ← A [2803] ← 9B

9B9B

9B

5. Indirect Addressing Mode

The instruction specifies the indirect address where the

effective address of the operand is placed.

The memory address is specified where the actual address of

operand is placed.

MOV A, 2802 H ; A ← [[2802]]

It moves the data from memory location specified by the
location 2802 to A.

Ex. Indirect Addressing Mode

MOV A, [2802]h A ← [[280 2]]

It transfer the data from memory specified memory location to A

Before After

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

A A

A ← [[2806]] A ← FF

FF
FF

06

28

FF

06

28

6. Implied Addressing Mode

It is also called inherent addressing mode.

The operand is implied by the instruction.
The operand is hidden/fixed inside the instruction.

Complement Accumulator :CMA

(Here accumulator A is implied by the instruction)

Complement Carry Flag : CMC

(Here Flags register is implied by the instruction)

Set Carry Flag : STC

7. Relative Addressing Mode

In relative addressing mode, contents of Program Counter PC is

added to address part of instruction to obtain effective address.

The address part of the instruction is called as offset and it can

+ve or –ve.

When the offset is added to the PC the resultant number is the

memory location where the operand will be placed.

X(PC) – note that X is a signed number
Branch > 0 LOOP

This location is computed by specifying it as an offset from the current
value of PC.

Branch target may be either before or after the branch instruction, the
offset is given as a singed num.

Ex. Relative Addressing mode

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

Actual OperandOffset = 04h

PC

Effective address of operand = PC + 01 + offset
Effective address of operand = 2801 + 01 + 04
Effective address of operand = 2806h

2801

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

Ex.Relative Addressing

Actual Operand2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

Offset = 03h

PC

Effective address of operand = PC + 01 + offset
Effective address of operand = 2803 + 01 + 03
Effective address of operand = 2807h

2803

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

8. Indexed Addressing Mode

In index addressing mode, contents of Index register is added to

address part of instruction to obtain effective address.

The address part of instruction holds the beginning/base

address in the base register.

The index register hold the index value, which is +ve.

Base remains same, the index changes.
When the base is added to the index register the resultant number is
the memory location where the operand will be placed.

the effective address of the operand is generated by adding a constant
value to the contents of an index register.

X(Ri): EA = X + [Ri]
The constant X may be given either as an explicit number or as a symbolic

name representing a numerical value.
If X is shorter than a word, sign-extension is needed.

Ex. Indexed Addressing Mode

Base = 2800h

Effective address of operand = Base + IX

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

IX IX IX IX

2800h + 0000h =
2800h

2800h + 0001h =
2801h

2800h + 0002h =
2802h

2800h + 0003h =
2803h

0003000200010000

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

Ex. Indexed Addressing Mode

Base = 2802h

Effective address of operand = Base + IX

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

IX IX IX IX

2802h + 0000h =
2802h

2802h + 0001h =
2803h

2802h + 0002h =
2804h

2802h + 0003h =
2805h

0003000200010000

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

9. Base Register Addressing Mode

•

In base register addressing mode, contents of base register is
added to the address part of instruction to obtain effective
address.

It is similar to the indexed addressing, contents of base register

is added to address part of instruction to obtain effective

address

The base register hold the beginning/base address.

The address part of instruction holds the offset.

Offset remains same, the base changes.

•

When the offset is added to the base register the resultant
Number is the Memory location where the operand will be placed.

Ex. Base Register Addressing

Offset= 0001h

Effective address of operand = Base Register +
offset

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

BaseBaseBaseBase

2800h + 0001h =
2801h

2801h + 0001h =
2802h

2802h + 0001h =
2803h

2803h + 0001h =
2804h

2800 280328022801

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

Ex. Base Register Addressing

Offset= 0003h

Effective address of operand = Base Register + offset

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

BaseBaseBaseBase

2800h + 0003h =
2803h

2801h + 0003h =
2804h

2802h + 0003h =
2805h

2803h + 0003h =
2806h

2800 280328022801

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

10.Additional Modes

 Autoincrement mode – the effective address of the
operand is the contents of a register specified in the
instruction. After accessing the operand, the contents of
this register are automatically incremented to point to the
next item in a list.

 (Ri)+. The increment is 1 for byte-sized operands, 2 for 16-
bit operands, and 4 for 32-bit operands.

 Autodecrement mode: -(Ri) – decrement first

Figure 2.16.The Autoincrement addressing mode used in the program

R0Clear

R0,SUM

R1

(R2)+,R0

Initialization

Move

LOOP Add

Decrement

LOOP

#NUM1,R2

N,R1Move

Move

Branch>0

82Chapter 2 - Machine Instructions & Programs

10(a). Autoincrement Addressing

At
start:

HL

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

HL HL HLHL

1st
Time

2nd
Time

3rd
Time

4th
Time

2802 280528042803

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

2802

HL pair incremented after its value is used

HL pair decremented before its value is used

At
start:

HL

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

2807

2806

2805

2804

2803

2802

2801

2800

HL HL HLHL

1st
Time

2nd
Time

3rd
Time

4th
Time

2804 280728062805

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

22

FF

6D

59

08

2E

F3

9F

2807

10(b). Autodecrement Addressing

Addressing modes

Mode Assembly Register Transfer

Direct address LD ADR AC ← M[ADR]

Indirect address LD @ADR AC ← M[M[ADR]]

Immediate operand LD # NBR AC ← NBR

Relative address LD $ADR AC ← M[PC +ADR]

Index addressing LD ADR(XR) AC ← M[ADR +XR]

Base register addr LD ADR (BR) AC←M [ADR +BR]

Register LD R1 AC ← R1

Register indirect
LD (R1) / MOV A,
@R1

AC ← M[R1]

Autoincrement LD (R1)+ AC ← M[R1], R1 ← R1+1

Autodecrement LD –(R1) AC← M [R1], R1← R1-1

85Chapter 2 - Machine Instructions & Programs

Addressing Modes-additional

 The
different
ways in which
the location
of an
operand is
specified in
an
instruction
are referred
to as
addressing
modes.

Name Assembler syntax Addressingfunction

Immediate #Value Operand = Value

Register R i EA = Ri

Absolute(Direct) LOC EA = LOC

Indirect (Ri) EA = [Ri]

(LOC) EA = [LOC]

Index X(R i) EA = [Ri] + X

Basewith index (Ri ,Rj) EA = [Ri] + [Rj]

Basewith index X(R i ,Rj) EA = [Ri] + [Rj] + X

and offset

Relative X(PC) EA = [PC] + X

Autoincrement (Ri)+ EA = [Ri] ;
Increment R i

Autodecrement (R i) Decrement R i ;

EA = [Ri]



problem-to find EA of the operand

Memory is having first instruction
to load AC.

Mode will specify the addressing
mode to get operand.

Address field of instruction is 500.

Find out the effective address
of operand and operand value by
considering different addressing
modes.

Addres
s

200

201

202

Memory

PC

R1

XR

399

400AC

500

600

702

800

100

400

Load to AC Mode

Address = 500

Next Instruction

450

700

800

900

325

300

200

PC = Program Counter
R1 = Register
XR = Index Register
AC = Accumulator

Problem-solution- immediate addressing mode

1. Immediate Addressing Mode

As instruction contains
immediate number 500.

It is stored as address 201.

Operand = 500

AC 500

Address Memory

PC

R1

XR

AC

100

400

200
Load to AC Mode

201 Address = 500

202

399

400

500

600

702

800

Next Instruction

450

700

800

900

325

300

200

LDI 500

Effective Address = 201

Problem-solution- reg. mode

2. Register Addressing Mode

•
•

Register R1 contains 400.
As operand is in register so no
any memory location.

Effective Address = Nil
Operand = 400

AC 400

Address

200

201

202

Memory

PC

R1

XR

399

400AC

500

600

702

800

100

400

Load to AC Mode

Address = 500

Next Instruction

450

700

800

900

325

300

200

solution -reg indirect mode

Address Memory

PC 3. Register Indirect Addressing Mode

R1
Register R1 contains 400.
So effective address of
operand is 400. The data stored
at 400 is 700.

XR

AC

Effective Address = 400
Operand = 700

AC 700

100

400

200

201

202

399

Load to AC Mode

Address = 500

Next Instruction

450

400 700

500

600

702

800

800

900

325

300

200

solution-direct addressing

PC
4. Direct Addressing Mode

R1
Instruction contains the address
500.
So effective address of operand
is 500. The data stored at 500 is
800.
Effective Address = 500
Operand = 800

AC 800

Address Memory

XR

AC

100

400

200

201

202

399

400

Load to AC Mode

Address = 500

Next Instruction

450

700

500 800

600

702

800

900

325

300

200

solution -indirect addressing

5. Indirect Addressing Mode

R1
Instruction contains the address
500.
Address at 500 is 800.
So effective address of operand
is 800. The data stored at 800 is
300.

XR

AC

Effective Address = 800
Operand = 300

AC 300

Address Memory

PC

100

400

200

201

202

399

400

500

600

702

Load to AC Mode

Address = 500

Next Instruction

450

700

800

900

325

800 300

200

solution-relative addressing

6. Relative Addressing Mode

PC = 200.
Offset = 500.
Instruction is of 2 bytes.
So effective address = PC + 2 +
offset = 200 + 500 +2 = 702 .
The data stored at 702 is 325.

Effective Address = 702
Operand = 325

AC 325

Address Memory

PC

R1

XR

AC

100

400

200

201

202

399

400

500

600

Load to AC Mode

Address = 500

Next Instruction

450

700

800

900

702 325

800 300

200

Problem-solution-index addressing

7. Index Addressing Mode

XR = 100.
Base = 500.
So effective address = Base + XR =

500 + 100 = 600 .
The data stored at 600 is 900.

Effective Address = 600
Operand = 900

AC 900

Address Memory

PC

R1

XR

AC

100

400

200

201

202

399

400

500

Load to AC Mode

Address = 500

Next Instruction

450

700

800

600 900

702

800

325

300

200

solution -autoincrement addressing

8. Autoincrement Addressing Mode

It is same as register indirect
addressing mode except
the contents of R1 are
incremented after the execution. R1
contains 400.
So effective address of operand is
400. The data stored at 400 is 700.

Effective Address = 400
Operand = 700

R1

AC 700

401

Address Memory

PC

R1

XR

AC

100

400

200

201

202

396

Load to AC Mode

Address = 500

Next Instruction

450

400 700

500

600

702

800

800

900

325

300

200

404

solution-autodecrement addressing

9. Autodecrement Addressing Mode

It is same as register indirect
addressing mode except the contents
of R1 are decremented before the
execution.
R1 contains 400.
R1 is first decremented to 399.
So effective address of operand is
399.
The data stored at 399 is 450.

Effective Address = 399
Operand = 450

R1

AC
450

399

Next Instruction

Address Memory

PC

R1

XR

AC

100

400

200

201

202

Load to AC Mode

Address = 500

399 450

400

500

600

702

800

700

800

900

325

300

200

Complete solution

Addressing Mode EA Operand

Immediate Addressing Mode 201 500

Register Addressing Mode Nil 400

Register Indirect Addressing Mode 400 700

Direct Addressing Mode 500 800

Indirect Addressing Mode 800 300

Relative Addressing Mode 702 325

Indexed Addressing Mode 600 900

Autoincrement Addressing Mode 400 700

Autodecrement Addressing Mode 399 450

Chapter 2 - Machine Instructions & Programs 98

Problem5: Consider a 16-bit processor in which the following
appears in main memory, starting at location 200:

200 Load to AC Mode

201 500

202 Next instruction

The first part of the first word indicates that this instruction
loads a value into an accumulator. The Mode field specifies an
addressing mode and, if appropriate, indicates a source register;
assuming that when used, the source register is R1, which has a
value of 400
There is also a base register that contains the value of 100. the
value of 500 in location 201 may be part of the address
calculation. Assume that location 399 contains the value 999,
location 400 contains the value 1000, and so on. Determine the
effective address and the operand to be loaded for the following
addressing modes:

Problem 5- home assignment

Solution (problem 5)-addressing modes

Effective Address?
Operand In AC ?

200

Address Memory

PC

R1

BR

XR

AC

100

400

200

201

202

Load to AC Mode

Address = 500

Next Instruction

399 999

400

500

600

702

11000

1000

1100

1200

1302

1700

200

Chapter 2 - Machine Instructions & Programs 100

EA Operand

a 500 1100

b 201 500

c 1100 1700

d 201+1+500 =702 1302

e 500+100=600 1200

f R1 400

g 400 1000

h 400 1000

Final Solution (problem 5)

Mode ?

Note. Identify the addressing mode and fill the lost column

Problem 6 -Home assignment

Memory is having first instruction
to load AC.

Mode will specify the addressing
mode to get operand.

Address field of instruction is
1000.

Find out the effective address of
operand and operand value by
considering different addressing
modes.

PC = Program Counter
R1 = Register
XR = Index Register
AC = Accumulator

The word length of the processor
is 4 bytes.

Addres
s

200

202

204

Memory

PC

R1

XR

396

400AC

1000

1400

1700

2000

400

1000

Load to AC Mode

Address = 1000

Next Instruction

450

700

1800

900

325

300

1000

1004

996

1800 625

1204

800

Chapter 2 - Machine Instructions & Programs 102

Problem 7:
Register R1 and R2 contain values 1800 and 3800
respectively. The word length of the processor is 4
bytes. What is the effective address of the memory
operand in each one of the following cases?

1) ADD 100 (R2), R6.
2) LOAD R6, 20 (R1,R2)
3) STORE –(R2), R6
4) SUBTRACT (R2)+, R6

Chapter 2 - Machine Instructions & Programs 103

Solution (problem 7)
1) Effective address = 100 + Contents of R2 = 100 + 3800 = 3900.
2) Effective address = 20 + Contents of R1 + Contents of R2

= 20 + 1800 + 3800 = 5620.
3) Effective address = Contents of R2 – 4 = 3800 – 4 = 3796.
4) Effective address = Contents of R2 = 3800.

Chapter 2 - Machine Instructions & Programs 104

Problem: 8
Given the following memory values and a one-ad
dress machine with an
accumulator:
Word 20 contains 40
Word 30 contains 50
Word 40 contains 60
Word 50 contains 70
What values do the following instructions load into the Accumulator?
a) Load IMMEDIATE 20
b) Load DIRECT 20
c) Load INDIRECT 20
d) Load IMMEDIATE 30
e) Load DIRECT 30
f) Load INDIRECT 30

Chapter 2 - Machine Instructions & Programs 105

Solution(problem 8)
a) 20
b) 40
c) 60
d)30
e) 50
f) 70

Chapter 2 - Machine Instructions & Programs 106

Let the address stored in the program counter be
designated by the symbol X1.
The instruction stored in X1 has an address part

(operand reference) X2.
The operand needed to execute the instruction is stored
in the memory word with address X3.
An index register contains the value X4.
What is the relationship between these various
quantities if the addressing mode of the instruction is
a) Direct. b) indirect. c) PC relative. d) indexed

Problem: 9

Chapter 2 - Machine Instructions & Programs 107

Solution: (problem 9)
a) X3=X2
b) X3=(X2)
c) X3=X1+X2+1
d) X3=X2+X4

Chapter 2 - Machine Instructions & Programs 108

An address field in an instruction contains decimal value 14.
Where is the corresponding operand located for:
a) immediate addressing?
b) direct addressing?
c) indirect addressing?
d) register addressing?
e) register indirect addressing?

Problem: 10

Chapter 2 - Machine Instructions & Programs 109

Solution (problem 10)
a) 14 (The address field).
b) Memory location 14.
c) The memory location whose address is in memory location 14.
d) Register 14.
e) The memory location whose address is in register 14

Assembly Language

110Chapter 2 - Machine Instructions & Programs

Chapter 2 - Machine Instructions & Programs 111

Machine instructions are represented by patterns of 0s and 1s.
Such patterns are awkward to deal with when discussing or preparing
programs. Therefore, we use symbolic names to represent the patterns.
EX. Move, Add, Increment, and Branch, for the instruction operations to
represent the corresponding binary code patterns.
When writing programs for a specific computer, such words are
normally replaced by acronyms called mnemonics, such as MOV, ADD, INC,
and BR.
Programs written in an assembly language can be automatically translated
into a sequence of machine instructions by a program called an assembler.

The assembler program is one of a collection of utility programs that
are a part of the system software.
The assembler, like any other program, is stored as a sequence of
machine instructions in the memory of the computer.

A user program is usually entered into the computer through a keyboard
and stored either in the memory or on a magnetic disk.
The user program is simply a set of lines of alphanumeric characters.

Chapter 2 - Machine Instructions & Programs 112

When the assembler program is executed, it reads the user program,

analyzes it, and then generates the desired machine language program.

The latter contains patterns of 0s and 1s specifying instructions that will

be executed by the computer.

The user program in its original alphanumeric text format is called a

source program, and the assembled machine language program is called

an object program.

Human-Readable Machine Language

 Computers understand ones and zeros…

 Humans like symbols…

 Assembler is a program that turns symbols into
machine instructions.

 ISA-specific:
close correspondence between symbols and instruction set

• mnemonics for opcodes

• labels for memory locations

 additional operations for allocating storage and initializing
data

ADD R6,R2,R6 ; increment index reg.

0001110010000110

Assembly Language Syntax

 Each line of a program is one of the following:

 an instruction

 an assember directive (or pseudo-op) (SUM EQU 200)

 a comment

 Whitespace (between symbols) and case are ignored.

 Comments (beginning with “;”) are also ignored.

 An instruction has the following format:

LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

Opcodes and Operands

 Opcodes
 reserved symbols that correspond to instructions

• ex: ADD, AND, LD, LDR, …
 Operands

 registers -- specified by Rn, where n is the register number
 numbers -- indicated by # (decimal) or x (hex)
 label -- symbolic name of memory location
 separated by comma
 number, order, and type correspond to instruction format

• ex:
ADD R1,R1,R3

ADD R1,R1,#3

LD R6,NUMBER

BRz LOOP

Labels and Comments

 Label

 placed at the beginning of the line

 assigns a symbolic name to the address corresponding to line

• ex:
LOOP ADD R1,R1,#-1

BRp LOOP

 Comment

 anything after a semicolon is a comment

 ignored by assembler

 used by humans to document/understand programs

 tips for useful comments:

• avoid restating the obvious, as “decrement R1”

• provide additional insight, as in “accumulate product in R6”

• use comments to separate pieces of program

Assembler Directives

 Pseudo-operations

 do not refer to operations executed by program

 used by assembler

 look like instruction, but “opcode” starts with dot

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL n allocate one word, initialize with

value n

.STRINGZ n-character

string

allocate n+1 locations,

initialize w/characters and null

terminator

Style Guidelines

 Use the following style guidelines to improve
the readability and understandability of your programs:

1. Provide a program header, with author’s name, date, etc.,
and purpose of program.

2. Start labels, opcode, operands, and comments in same column
for each line. (Unless entire line is a comment.)

3. Use comments to explain what each register does.

4. Give explanatory comment for most instructions.

5. Use meaningful symbolic names.

• Mixed upper and lower case for readability.

• ASCIItoBinary, InputRoutine, SaveR1

6. Provide comments between program sections.

7. Each line must fit on the page -- no wraparound or truncations.

• Long statements split in aesthetically pleasing manner.

Assembly Process

 Convert assembly language file (.asm)
into an executable file (.obj)

 First Pass:

 scan program file

 find all labels and calculate the corresponding addresses;
this is called the symbol table

 Second Pass:

 convert instructions to machine language,
using information from symbol table

First Pass: Constructing the Symbol Table

1. Find the .ORIG statement,
which tells us the address of the first instruction.

 Initialize location counter (LC), which keeps track of
the
current instruction.

2. For each non-empty line in the program:

a) If line contains a label, add label and LC to symbol table.

b) Increment LC.

– NOTE: If statement is .BLKW or .STRINGZ,
increment LC by the number of words allocated.

3. Stop when .END statement is reached.

 NOTE: A line that contains only a comment is considered an empty
line.

Practice

 Construct the symbol table

Symbol Address

Practice

 Construct the symbol table

Symbol Address

122Chapter 2 - Machine Instructions & Programs

Second Pass: Generating Machine Language

 For each executable assembly language statement,
generate the corresponding machine language instruction.
 If operand is a label,

look up the address from the symbol table.

Linking and Loading

 Loading is the process of copying an executable image
into memory.

 more sophisticated loaders are able to relocate images
to fit into available memory

 must readjust branch targets, load/store addresses

 Linking is the process of resolving symbols between
independent object files.

 suppose we define a symbol in one module,
and want to use it in another

 some notation, such as .EXTERNAL, is used to tell assembler
that a symbol is defined in another module

 linker will search symbol tables of other modules to resolve
symbols and complete code generation before loading

Types of Instructions

 Data Transfer Instructions

Name Mnemonic

Load LD

Store ST

Move MOV

Exchange XCH

Input IN

Output OUT

Push PUSH

Pop POP

Data value is
not modified

125Chapter 2 - Machine Instructions & Programs

Data Transfer Instructions

Mode Assembly Register Transfer

Direct address LD ADR AC ← M[ADR]

Indirect address LD @ADR AC ← M[M[ADR]]

Relative address LD $ADR AC ← M[PC+ADR]

Immediate operand LD # NBR AC ← NBR

Index addressing LD ADR(X) AC ← M[ADR+XR]

Register LD R1 AC ← R1

Register indirect LD (R1) AC ← M[R1]

Autoincrement LD (R1)+ AC ← M[R1], R1 ← R1+1

126Chapter 2 - Machine Instructions & Programs

Data Manipulation Instructions

 Arithmetic

 Logical & Bit Manipulation

 Shift

Name Mnemonic

Clear CLR
Complement COM

AND AND
OR OR

Exclusive-OR XOR
Clear carry CLRC
Set carry SETC

Complement carry COMC
Enable interrupt EI
Disable interrupt DI

Chapter 2 - Machine Instructions & Programs

Name Mnemonic

Increment INC
Decrement DEC

Add ADD
Subtract SUB
Multiply MUL
Divide DIV

Add with carry ADDC
Subtract with borrow SUBB

Negate NEG

Chapter 2 - Machine Instructions & Programs

Data Manipulation Instructions

Data Manipulation Instructions

Name Mnemonic

Logical shift right SHR
Logical shift left SHL

Arithmetic shift right SHRA
Arithmetic shift left SHLA

Rotate right ROR
Rotate left ROL

Rotate right through carry RORC

Rotate left through carry ROLC

Chapter 2 - Machine Instructions & Programs

Program Control Instructions

Name Mnemonic

Branch BR

Jump JMP

Skip SKP

Call CALL

Return RET

Compare
(Subtract)

CMP

Test (AND) TST

Subtract A – B but
don’t store the result

1 0 1 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

Mask

130Chapter 2 - Machine Instructions & Programs

Conditional Branch Instructions

Mnemonic Branch Condition
Tested

Condition

BZ Branch if zero Z = 1

BNZ Branch if not zero Z = 0

BC Branch if carry C = 1

BNC Branch if no carry C = 0

BP Branch if plus S = 0

BM Branch if minus S = 1

BV Branch if overflow V = 1

BNV
Branch if no

overflow
V = 0

131Chapter 2 - Machine Instructions & Programs

Basic Input/output Operations

132Chapter 2 - Machine Instructions & Programs

I/O

 The data on which the instructions operate are not
necessarily already stored in memory.

 Data need to be transferred between processor and outside
world (disk, keyboard, etc.)

 I/O operations are essential, the way they are performed
can have a significant effect on the performance of the
computer.

133Chapter 2 - Machine Instructions & Programs

External Devices

 Human readable

 Screen, printer, keyboard

 Machine readable

 Monitoring and control

 Communication

 Modem

 Network Interface Card (NIC)

Generic Model of I/O Module

External Device Block Diagram

Typical I/O Data Rates

I/O Module Function

 Control & Timing

 CPU Communication

 Device Communication

 Data Buffering

 Error Detection

I/O Steps

 CPU checks I/O module device status

 I/O module returns status

 If ready, CPU requests data transfer

 I/O module gets data from device

 I/O module transfers data to CPU

 Variations for output, DMA, etc.

Input Output Techniques

 Programmed

 Interrupt driven

 Direct Memory Access (DMA)

Programmed I/O

 CPU has direct control over I/O

 Sensing status

 Read/write commands

 Transferring data

 CPU waits for I/O module to complete operation

 Wastes CPU time

Programmed I/O - detail

 CPU requests I/O operation

 I/O module performs operation

 I/O module sets status bits

 CPU checks status bits periodically

 I/O module does not inform CPU directly

 I/O module does not interrupt CPU

 CPU may wait or come back later

Program-Controlled I/O Example

 Read in character input from a keyboard and produce
character output on a display screen.

 Rate of data transfer (keyboard, display, processor)
 Difference in speed between processor and I/O device

creates the need for mechanisms to synchronize the
transfer of data.

 A solution: on output, the processor sends the first
character and then waits for a signal from the display that
the character has been received. It then sends the second
character. Input is sent from the keyboard in a similar way.

 On Input , the processor waits for a signal indicating that a
character key has been struck and that its code is available
in some buffer register associated with the keyboard. Then
the processor proceeds to read that code.

143Chapter 2 - Machine Instructions & Programs

Addressing I/O Devices

 Under programmed I/O data transfer is very like
memory access (CPU viewpoint)

 Each device given unique identifier

 CPU commands contain identifier (address)

Program-Controlled I/O Example

DATAIN DATAOUT

SIN SOUT

Key board Display

Bus

Figure 2.19 Bus connection for processor, keyboard, and display.

Processor

- Registers
- Flags (status register)
- Device interface

145Chapter 2 - Machine Instructions & Programs

Status register Status register

146

difference in speed between the processor and I/O devices
creates the need for mechanisms to synchronize the transfer
of data between them.
A solution to this problem is as follows; On output, the
processor sends the first character and then waits for a
signal from the display that the character has been
received. It then sends the second character, and so on. Input
is sent from the keyboard in a similar way; the processor waits
for a signal indicating that a character key has been struck and
that its code is available in some buffer register associated
with the keyboard. Then the processor proceeds to read that
code.

147

The keyboard and the display are separate devices as shown in
Figure .
The action of striking a key on the key board does not
automatically cause the corresponding character to be displayed
on the screen.
One block of instructions in the I/O program transfers the

character into the processor, and another associated block of
instructions causes the character to be displayed.

148

Moving a character code from the keyboard to the processor.
Striking a key stores the corresponding character code in an 8-
bit buffer register associated with the keyboard.
Let us call this register DATAIN, as shown in Figure.
To inform the processor that a valid character is in DATAIN, a
status control flag, SIN, is set to 1.
A program monitors SIN, and when SIN is set to 1, the
processor reads the contents of DATAIN.
When the character is transferred to the processor, SIN is
automatically cleared to 0.
If a second character is entered at the keyboard, SIN is again
set to 1 and the process repeats.

149

Characters transfer from the processor to the display
A buffer register, DATAOUT, and a status control flag, SOUT,
are used for this transfer.
When SOUT equals 1,the display is ready to receive a character.
Under program control, the processor monitors SOUT, and when
SOUT is set to 1, the processor transfers a character code to
DATAOUT.
The transfer of a character to DATAOUT clears SOUT to 0.
If the display device is ready to receive a second character,
SOUT is again set to 1.
The buffer registers DATAIN and DATAOUT and the status
flags SIN and SOUT are part of circuitry commonly known as a
device interface.
The circuitry for each device is connected to the processor via a
bus.

150

In order to perform I/O transfers, we need machine instructions
that can check the state of the status flags and transfer data
between the processor and the I/O device.
These instructions are similar in format to those used for moving
data between the processor and the memory.
For example, the processor can monitor the keyboard status flag
SIN and transfer a character from DATAIN to register R1 by
the following sequence of operations:

READWAIT Branch to READWAIT if SIN = 0
Input from DATAIN to R1

I/O transfer

Sequence of operations is used for transferring input to processor

151

The Branch operation is usually implemented by two machine
instructions.
The first instruction tests the status flag and the second
performs the branch.
Although the details vary from computer to computer, the main
idea is that the processor monitors the status flag by executing a
short wait loop and proceeds to transfer the input data when SIN
is set to 1 as a result of a key being struck.
The Input operation resets SIN to 0.
An analogous sequence of operations is used for transferring
output to the display.
An example is

WRTTEWAIT Branch to WRITEWATT if SOUT = 0
Output from R1 to DATAOUT

Sequence of operations for transferring output to the display

152

Again, the Branch operation is normally implemented by two
machine instructions.
The wait loop is executed repeatedly until the status flag
SOUT is set to 1 by the display when it is free to receive a
character.
The Output operation transfers a character from R1 to
DATAOUT to be displayed, and it clears SOUT to 0.

We assume that the initial state of SIN is 0 and the initial state
of SOUT is 1.
This initialization is normally performed by the device control
circuits when the devices are placed under computer control
before program execution begins.

153

Until now, we have assumed that the addresses issued by the
processor to access instructions and operands always refer to
memory locations. Many computers use an arrangement called
memory-mapped I/O in which some memory address values are
used to refer to peripheral device buffer registers, such as
DATAIN and DATAOUT.
Thus, no special instructions are needed to access the contents of
these registers; data can be transferred between these registers
and the processor using instructions that we have already
discussed, such as Move, Load, or Store.
For example, the contents of the keyboard character buffer
DATAIN can be transferred to register R1 in the processor
by the instruction

MoveByte DATAIN,R1

154

Similarly, the contents ofregister R1 can be transferred to
DATAOUT by the instruction

MoveByte Rl,DATAOUT
The status flags SIN and SOUT are automatically cleared when
the buffer registers DATAIN and DATAOUT are referenced,
respectively.

155

The MoveByte operation code signifies that the operand
size is a byte, to distinguish it from the operation code
Move that has been used for word operands.
the two data buffets in Figure may be addressed as if they were two
memory locations.
It is possible to deal with the status flags SIN and SOUT in the
same way, by assigning them
distinct addresses.
However, it is more common to include SIN and SOUT in device
status registers, one for each of the two devices.
Let us assume that bit in registers INSTATUS and OUTSTATUS
corresponds to SIN and SOUT, respectively.
The read Operation just described may now be implemented by the
machine instruction sequence

156

READWAIT Testbit #3,INSTATUS
Branch=0 READWAIT
MoveByte DATAIN,R1

The write operation may be implemented as

WRITEWAIT Testbit #3.0UTSTATUS
Branch=0 WRITEWAIT
MoveByte R1,DATA0UT

157

The Test bit instruction tests the state of one bit in the destination
location, where the bit position to be tested is indicated by the first
operand.
If the bit tested is equal to 0, then the condition of the branch
instruction is true, and a branch is made to the beginning
of the wait loop.
When the device is ready, that is, when the bit tested becomes equal
to 1, the data are read from the input buffer or written into the
output buffer.

The program shown ,uses these two operations to read a line of
characters typed at a keyboard and send them out to a display
device.
As the characters are read in, one by one, they are stored in a data
area in the memory and then echoed back to display,

158

159

The program finishes when the carriage return character, CR,
is read, stored, and sent to the display .
The address of the first byte location of the memory data
area where the line is to be stored is LOC.
Register RO is used to point to this area, and it is initially
loaded with the address LOC by the first instruction in the
program.
RO is incremented for each character read and displayed by
the Auto increment addressing mode used in the Compare
instruction.

160

Program -controlled I/O requires continuous involvement of the
processor in the I/O activities. Almost all of the execution time
for the program is accounted for in the two wait loops, while the
processor waits for a character to be struck or for the display
to become available.
It is desirable to avoid wasting processor execution time in this
situation.
Other I/O techniques, based on the use of interrupts, may be
used to improve the utilization of the processor.

Program-Controlled I/O Example

 Machine instructions that can check the state of the
status flags and transfer data:
READWAIT Branch to READWAIT if SIN = 0

Input from DATAIN to R1

WRITEWAIT Branch to WRITEWAIT if SOUT = 0
Output from R1 to DATAOUT

161Chapter 2 - Machine Instructions & Programs

Program-Controlled I/O Example

 Memory-Mapped I/O – some memory address values are
used to refer to peripheral device buffer registers. No
special instructions are needed. Also use device status
registers.

READWAIT Testbit #3, INSTATUS
Branch=0 READWAIT
MoveByte DATAIN, R1

162Chapter 2 - Machine Instructions & Programs

Program-Controlled I/O Example

 Assumption – the initial state of SIN is 0 and the initial
state of SOUT is 1.

 Any drawback of this mechanism in terms of efficiency?

 Two wait loopsprocessor execution time is wasted

 Alternate solution?

 Interrupt

163Chapter 2 - Machine Instructions & Programs

I/O Mapping

Memory mapped I/O
 Devices and memory share an address space

 I/O looks just like memory read/write

 No special commands for I/O
• Large selection of memory access commands available

 Isolated I/O
 Separate address spaces

 Need I/O or memory select lines

 Special commands for I/O

• Limited set

I/O Commands

 CPU issues address

 Identifies module (& device if >1 per module)

 CPU issues command

 Control - telling module what to do

• e.g. spin up disk

 Test - check status

• e.g. power? Error?

 Read/Write

• Module transfers data via buffer from/to device

Program-Controlled I/O Example

 Assumption – the initial state of SIN is 0 and the initial
state of SOUT is 1.

 Any drawback of this mechanism in terms of efficiency?

 Two wait loopsprocessor execution time is wasted

 Alternate solution?

 Interrupt

166Chapter 2 - Machine Instructions & Programs

Home Work

 For each Addressing modes mentioned before, state one
example for each addressing mode stating the specific
benefit for using such addressing mode for such an
application.

167Chapter 2 - Machine Instructions & Programs

Stacks

168Chapter 2 - Machine Instructions & Programs

What is a stack?

 A stack is a list with the restriction
 that insertions and deletions can only be

performed at the top of the list

 The other end is called bottom

 The structure is sometimes referred to as a pushdown stack

 Stores a set of elements in a particular order
 Stack principle: LAST IN FIRST OUT (LIFO)

 Example

In order to organize the control and information linkage between
the main program and the subroutine, a data structure called a stack is
used.
It is also used to describe this type of storage mechanism;
the last data item placed on the stack is the first one removed when
retrieval begins.

The terms push and pop are used to describe placing a new item on the

stack and removing the top item from the stack, respectively.

Push and Pop

 Primary operations: Push and Pop

 Push - Add an element to the top of the stack

 Pop - Remove the element at the top of the stack

Atop

empty stack

top

top

top

push an element push another

A

B

pop

A

When a stack is used in a program, it is usually allocated a fixed amount of
space in the memory.
In this case, we must avoid pushing an item onto the stack when the
stack has reached its maximum size.
Also, we must avoid attempting to pop an item off an empty stack, which
could result from a programming error.

Last In First Out

B

A

D

C

B

A

C

B

A

D

C

B

A

E

D

C

B

A
top

top

top

top

top

A

Stack Applications

 Real life

 Pile of books

 Plate trays

Imagine a pile of trays in a cafeteria; customers pick up new trays
from the top of the pile, and clean trays are added to the pile
by placing them onto the top of the pile

 More applications related to computer science

 Program execution stack (read more from your text)

 Evaluating expressions

 conversion of infix to postfix

Stack Organization

 LIFO

Last In First Out

SP

Stack Bottom

Current
Top of Stack

TOS 0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

173Chapter 2 - Machine Instructions & Programs

Stack Organization

 PUSH

 SP ← SP – 1

 M[SP] ← DR

 If (SP = 0) then (FULL ← 1)

 EMPTY ← 0

SP

Stack Bottom

Current
Top of Stack

TOS 0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 0

1 6 9 0Current
Top of Stack

TOS

174Chapter 2 - Machine Instructions & Programs

Stack Organization

 POP

 DR ← M[SP]

 SP ← SP + 1

 If (SP = 11) then (EMPTY ← 1)

 FULL ← 0

SP

Stack Bottom

Current
Top of Stack

TOS 0

1

2

3

4

7

8

9

10

5

6

Stack

0 0 5 5

0 0 0 8

0 0 2 5

0 0 1 5

0 1 2 3

FULL EMPTY

1 6 9 01 6 9 0

Current
Top of Stack

TOS

175Chapter 2 - Machine Instructions & Programs

0

1

2

102

202

201

200

100

101

Stack Organization

 Memory Stack

 PUSH

SP ← SP – 1

M[SP] ← DR

 POP

DR ← M[SP]

SP ← SP + 1

PC

AR

SP

176Chapter 2 - Machine Instructions & Programs

Reverse Polish Notation

 Infix Notation

 A + B

 Prefix or Polish Notation

 + A B

 Postfix or Reverse Polish Notation (RPN)

 A B +

A  B + C  D A B  C D  +
RPN

(2) (4)  (3) (3)  +

(8) (3) (3)  +

(8) (9) +

17

177Chapter 2 - Machine Instructions & Programs

Reverse Polish Notation

 Example

(A + B)  [C  (D + E) + F]

(A B +) (D E +) C  F +

178Chapter 2 - Machine Instructions & Programs

Reverse Polish Notation

 Stack Operation

 (3) (4)  (5) (6)  +

PUSH 3

PUSH 4

MULT

PUSH 5

PUSH 6

MULT

ADD
3

4

12

5

6

30

42

179Chapter 2 - Machine Instructions & Programs

The Towers of Hanoi
A Stack-based Application

 GIVEN: three poles

 a set of discs on the first pole, discs of different sizes,
the smallest discs at the top

 GOAL: move all the discs from the left pole to the right
one.

 CONDITIONS: only one disc may be moved at a time.

 A disc can be placed either on an empty pole or on top of
a larger disc.

Towers of Hanoi

Towers of Hanoi

Towers of Hanoi

Towers of Hanoi

Towers of Hanoi

Towers of Hanoi

Towers of Hanoi

Towers of Hanoi

Subroutines

 subroutine is a group of instructions that will be used
repeatedly in different locations of the program.

 Rather than repeat the same instructions several times, they
can be grouped into a subroutine that is called from the
different locations.

 In Assembly language, a subroutine can exist anywhere in the
code.

 However, it is customary to place subroutines separately from
the main program.

 The CALL instruction is used to redirect program execution to
the subroutine.

 The RET insutruction is used to return the execution to the
calling routine.

Chapter 2 - Machine Instructions & Programs 189

Subroutines

 We should be able to call a subroutine from anywhere in our
program. By “call” we mean being able to change control flow
so that the routine is executed.

 We should be able to pass parameters that may take
different values across different calls.

 A subroutine must be able to return a value.

 A subroutine must be able to change control flow so that
execution continues immediately after the point where it
was called.

 Since a subroutine can be called from many different places
this suggests that the routine should be able to
differentiate between them and “return” to the right spot
depending on where it was called from.

Chapter 2 - Machine Instructions & Programs 190

Subroutines

Chapter 2 - Machine Instructions & Programs 191

Subroutines

 A subroutine is a section of code which performs a specific task, usually a task
which needs to be executed by different parts of the program.

 Example:Math functions, such as square root (sqrt)

 Because a subroutine can be called from different places in a program, you cannot
get out of a subroutine with an instruction such as jmp label

 Because you would need to jump to different places depending upon which section
of the code called the subroutine.

 When you want to call the subroutine your code has to save the address where the
subroutine should return to. It does this by saving the return address on the stack.

 This is done automatically by using JSR (Jump to Subroutine) or BSR (Branch to
Subroutine) .

 This instruction pushes the address of the instruction following the JSR (BSR)
instruction on the stack

 After the subroutine is done executing its code, it needs to return to the address
saved on the stack.

 This is done automatically when you return from the subroutine by

 using RTS (Return from Subroutine) instruction.

 This instruction pulls the return address off the stack and loads it into the PC.

Chapter 2 - Machine Instructions & Programs 192

Program using Subroutines

Modify Flag Content using
PUSH/POP

Problem: To Reset the Zero Flag

7 6 5 4 3 2 1 0

8085 Flag : S | Z | X |AC|X |P |X |Cy

 Program:

MVI HL ,FF BF H

PUSH PSW

PUSH R

AND

POP

Chapter 2 - Machine Instructions & Programs 193

PSW (Program Status Word.
This register pair is made up of
the Accumulator
and the Flags registers
PUSH PSW
Decrement SP
Copy the contents of register A to the
memory location pointed to by SP
Decrement SP
Copy the contents of Flag register to the
memory
location pointed to by SP

POP PSW (1 Byte Instruction)
Copy the contents of the memory location
pointed to by the SP to Flag register
Increment SP.
Copy the contents of the memory location
pointed to by the SP to register A
–Increment SP

Delay subroutine

 Write a Program that will display FF and 11 repeatedly on the seven segment
display. Write a ‘delay’ subroutine and

 Call it as necessary.

00: LXISP FFFF

03: MVIA FF

05: OUT 00

07: CALL 14 20

0A: MVIA 11

0C: OUT 00

0E: CALL 14 20

11: JMP 03 C0

DELAY: 14: MVIB FF

16: MVIC FF

18: DCR C

19: JNZ 18 C0

1C: DCR B

1D: JNZ 16 C0

20: RET

Chapter 2 - Machine Instructions & Programs 194

Queue

 Like a stack, a queue is also a list.
 Stores a set of elements in a particular order
 Stack principle: FIRST IN FIRST OUT
 = FIFO
 It means: the first element inserted is the first one to be

removed
 Example
 The first one in line is the first one to be served

Queue Applications

 Real life examples

 Waiting in line

 Waiting on hold for tech support

 Applications related to Computer Science

 Threads

 Job scheduling (e.g. Round-Robin algorithm for CPU
allocation)

Queue

 Like a stack, a queue is also a list.

 With a queue, insertion is done at one end, while deletion is
performed at the other end.

 Accessing the elements of queues follows a First In, First
Out (FIFO) order.

 Like customers standing in a check-out line in a store, the
first customer in is the first customer served.

A

B

A

C

B

A

D

C

B

A

D

C

Brear

front

rear

front

rear

front

rear

front

rear

front

First In First Out

Queue

 Another form of restricted list

 Insertion is done at one end, whereas deletion is
performed at the other end

 Basic operations:

 enqueue: insert an element at the rear of the list

 dequeue: delete the element at the front of the list

 First-in First-out (FIFO) list

Enqueue and Dequeue

 Primary queue operations: Enqueue and Dequeue

 Like check-out lines in a store, a queue has a front and a rear.

 Enqueue

 Insert an element at the rear of the queue

 Dequeue

 Remove an element from the front of the queue

Insert

(Enqueue)
Remove

(Dequeue) rearfront

Queue Implementation of Array

 There are several different algorithms to implement Enqueue
and Dequeue

 When enqueuing, the front index is always fixed and the
rear index moves forward in the array.

front

rear

Enqueue(3)

3

front

rear

Enqueue(6)

3 6

front

rear

Enqueue(9)

3 6 9

Queue Implementation of Array

 When enqueuing, the front index is always fixed and the rear
index moves forward in the array.

 When dequeuing, the element at the front the queue is
removed. Move all the elements after it by one position (D1)

 When dequeuing, the element at the front the queue is
removed. the rear index is always fixed. (D2)

Dequeue()

front

rear

6 9

Dequeue() Dequeue()

front

rear

9

rear = -1

front(D1)

front rear Q[0] Q[1] Q[2] Q[3] Comments

-1

-1

-1

-1

 0

 1

-1

 0

 1

 2

 2

 2

J1

J1 J2

J1 J2 J3

 J2 J3

 J3

queue is empty

Job 1 is added

Job 2 is added

Job 3 is added

Job 1 is deleted

Job 2 is deleted

Applications: Job Scheduling (D2)

EMPTY QUEUE

[2] [3] [2] [3]

[1] [4] [1] [4]

[0] [5] [0] [5]

front = 0 front = 0

rear = 0 rear = 3

J2

J1

J3

Circular queue

Can be seen as a circular queue

FULL QUEUE FULL QUEUE

[2] [3] [2] [3]

[1] [4][1] [4]

[0] [5] [0] [5]

front =0

rear = 5

front =4

rear =3

J2 J3

J1 J4

J5 J6 J5

J7

J8 J9

Leave one empty space when queue is full Why?

How to test when queue is empty?

How to test when queue is full?

Chapter 2 - Machine Instructions & Programs 206

Queues vs stacks

1. One end of the stack is fixed (the bottom), while the other end rises and falls

as data are pushed and popped. A single pointer is needed to point to the top of

the stack at any given time.

On the other hand, both ends of a queue move to higher addresses

as data are added at the back and removed from the front. So two pointers are

needed to keep track of the two ends of the queue.

2.Without further control,a queue would continuously move through the memory

of a computer in the direction of higher addresses.

One way to limit the queue to a fixed region in memory is to use a circular Q.

Let us assume that memory addresses from BEGINNING to

END are assigned to the queue. The first entry in the queue is entered into

location BEGINNING, and successive entries are appended to the queue by

entering them at successively higher addresses.

By the time the back of the queue reaches END, space will have been created at

the beginning if some items have been removed from the queue.

Hence, the back pointer is reset to the value BEGINNING and the process

continues. As in the case of a stack, care must be taken to detect when the

region assigned to the data structure is either completely full or completely

empty.

Logical Shifts

 Logical shift – shifting left (LShiftL) and shifting right (LShiftR)

CR00

before:

after:

0

1

0 0 01 1 1 . . . 11

0 0 1 1 1 000

(b) Logical shift right LShiftR #2,R0

(a) Logical shift left LShiftL #2,R0

C R0 0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

. . .

207Chapter 2 - Machine Instructions & Programs

Multiplication and Division-Arithmetic Shifts

CY

before:

after:

0

1

1 1 00 0 1 . . . 01

1 1 0 0 1 011

(c) Arithmetic shift right AShiftR #2,R0

R0

. . .

208Chapter 2 - Machine Instructions & Programs

An arithmetic shift is a microoperation that shifts signed binary
number to the left or right.
An arithmetic shift left multiplies a signed binary number by 2

and shift right divides by 2.
The signed bit remains unchanged whether it is divided or
multiplied by 2.

The first (or sign) bit (bit 0) does not participate in the shift.

Arithmetic left Shift:

Arithmetic right Shift

If the number is positive, the leftmost bits will be filled with zero.
If the number is negative, the leftmost bits will be filled with ones.

Chapter 2 - Machine Instructions & Programs 209

Arithmetic Shifts

If the bit shifted out of position 1 does not match the sign bit, overflow will occur.

SAME AS LOGICAL LEFT SHIFT!

0

0 1

1

Chapter 2 - Machine Instructions & Programs 210

1) Before: 00001000 (= 8 decimal)
After: 00000100 (= 4 decimal)

Before: 10000011 (= -125 decimal in two's complement)
After: 11000001 (= -63 decimal - one bit is "lost" off the bottom)
After: 11100000 (= -32 decimal - one bit is "lost" off the bottom)
After: 11110000 (= -16 decimal) After: 11111000 (= -8 decimal)
After: 11111100 (= -4 decimal) After: 11111110 (= -2 decimal)
After: 11111111 (= -1 decimal) After: 11111111

(= -1 decimal - one bit is "lost" off the bottom)

Arithmetic Right Shift :1 bit

Chapter 2 - Machine Instructions & Programs 211

Look at the 8-bit binary bit patterns below and note the
differences between Arithmetic Right Shift and Logical Right
Shift:

11110111 (-9) arithmetic-right-shifted gives 11111011 (-5)
11110111 logical-right-shifted gives 01111011 (+123)
11111011 (-5) arithmetic-right-shifted gives 11111101 (-3)
11111011 logical-right-shifted gives 01111101 (+125)
11111101 (-3) arithmetic-right-shifted gives 11111110 (-2)
11111101 logical-right-shifted gives 01111110 (+126)
11111110 (-2) arithmetic-right-shifted gives 11111111 (-1)

11111110 logical-right-shifted gives 01111111 (127)
11111111 (-1) arithmetic-right-shifted gives 11111111 (-1)

11111111 logical-right-shifted gives 01111111 (+127)
01111111 (+127) arithmetic-right-shifted gives 00111111(+63)
01111111 l logical-right-shifted gives 00111111 (+63)

00000001 (+1) arithmetic-right-shifted gives 00000000 (0)
00000001 logical-right-shifted gives 00000000 (0)

Rotate

Figure 2.32. Rotate instructions.

CYR0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 001

(c) Rotate r ight without carry RotateR #2,R0

(a) Rotate left without carry RotateL #2,R0

CY R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 10101

CY

before:

after:

0

1

0 0 01 1 1 . . . 11

1 0 1 1 1 000

(d) Rotate right with Carry Rotate RC #2,R0

R0

. . .

. . .

(b) Rotate left with carry RotateLC #2,R0

CY R0

before:

after:

0

1

0 0 01 1 1 . . . 11

1 10 . . . 00101

212Chapter 2 - Machine Instructions & Programs

Multiplication and Division

 Not very popular (especially division)

 Multiply Ri, Rj

Rj ← [Ri] х [Rj]

 2n-bit product case: high-order half in R(j+1)

 Divide Ri, Rj

Rj ← [Ri] / [Rj]

 Quotient is in Rj, remainder may be placed in R(j+1)

213Chapter 2 - Machine Instructions & Programs

Encoding of Machine Instructions

214Chapter 2 - Machine Instructions & Programs

(NOT IN SYLLABUS)

Encoding of Machine Instructions

 Assembly language program needs to be converted into
machine instructions. (ADD = 0100 in ARM instruction set)

 In the previous section, an assumption was made that all
instructions are one word in length.

 OP code: the type of operation to be performed and the
type of operands used may be specified using an encoded
binary pattern

 Suppose 32-bit word length, 8-bit OP code (how many
instructions can we have?), 16 registers in total (how many
bits?), 3-bit addressing mode indicator.

 Add R1, R2
 Move 24(R0), R5
 LshiftR #2, R0
 Move #$3A, R1
 Branch>0 LOOP

OP code Source Dest Other info

8 7 7 10

(a) One-word instruction

215Chapter 2 - Machine Instructions & Programs

Encoding of Machine Instructions

 What happens if we want to specify a memory operand
using the Absolute addressing mode?

 Move R2, LOC

 14-bit for LOC – insufficient

 Solution – use two words

(b) Two-word instruction

Memory address/Immediate operand

OP code Source Dest Other info

216Chapter 2 - Machine Instructions & Programs

Encoding of Machine Instructions

 Then what if an instruction in which two operands can be
specified using the Absolute addressing mode?

 Move LOC1, LOC2

 Solution – use two additional words

 This approach results in instructions of variable length.
Complex instructions can be implemented, closely resembling
operations in high-level programming languages – Complex
Instruction Set Computer (CISC)

217Chapter 2 - Machine Instructions & Programs

Encoding of Machine Instructions

 If we insist that all instructions must fit into a single 32-
bit word, it is not possible to provide a 32-bit address or a
32-bit immediate operand within the instruction.

 It is still possible to define a highly functional instruction
set, which makes extensive use of the processor registers.

 Add R1, R2 ----- yes

 Add LOC, R2 ---- no

 Add (R3), R2 ---- yes

218Chapter 2 - Machine Instructions & Programs

Chapter 2 - Machine Instructions & Programs 219

The difference in speed between the

processor and I/O devices creates the need for mechanisms to synchronize the transfer
ofdata between them.

A solution to this problem is as follows; On output, the processor sends the first

character and then waits for a signal from the display that the character has been

received. It then sends the second character, and so on. Input is sent from the keyboard

in a similar way; the processor waits for a signal indicating that a character key has

been struck and that its code is available in some buffer register associated with the

keyboard. Then the processor proceeds to read that code.

The keyboard and the display are separate devices as shown in Figure 2.19. The

action ofstriking akey on the keyboarddoes notautomatically causethecorresponding

character to be displayed on the screen. One block of instructions in the I/O [n'ogram

transfers the character into the processor, and another associated block of instructions

causes the character to be displayed.

Consider theproblem ofmoving a character code from the keyboard to the proces¬

sor. Striking a key stores the corresponding character code in an 8-bit buffer register

associated withthekeyboard. Letus callthis registerDATAIN, as shown inRgure 2.19.

To informthe processorthat a valid character is in DATAIN, a status control flag, SIN,

is set to 1. A program monitors SIN, and when SIN is set to 1, the processor reads

the contents of DATAIN. When the character is transferred to the processor, SIN is

automatically cleared to 0. Ifa second characteris entered atthe keyboard, SINis again

set to 1 and the process repeats.

An analogous process takes place when characters are transferred fromtheproces¬

sorto thedisplay. A bufferregister, DATAOUT, andastatuscontrolflag, SOUT, areused

for this transfer. When SOUTequals 1,thedisplay is ready toreceive acharacter. Under

program control, theprocessormonitors SOUT, and when SOUTis setto 1, theproces¬
sor transfers a character code to DATAOUT. The transfer of a character to DATAOUT

clears SOUTto 0; whenthedisplay deviceisready toreceive a secondcharacter, SOUT

is again set to 1. The buffer re�sters DATAIN and DATAOUT and the status flags SIN

